4.三棱錐S-ABC及其三視圖中的正視圖和側(cè)視圖如圖所示,則棱SB的長(zhǎng)為( 。
A.$16\sqrt{3}$B.$\sqrt{38}$C.$4\sqrt{2}$D.$2\sqrt{11}$

分析 根據(jù)三視圖得SC⊥平面ABC,且底面△ABC為等腰三角形,根據(jù)圖中數(shù)據(jù)與勾股定理求出SB的值.

解答 解:由已知中的三視圖可得SC⊥平面ABC,且底面△ABC為等腰三角形,
在△ABC中,AC=4,AC邊上的高為$2\sqrt{3}$,
所以BC=4;
在Rt△SBC中,由SC=4,可得SB=$4\sqrt{2}$.
故選:C.

點(diǎn)評(píng) 本題考查了空間幾何體三視圖的應(yīng)用問(wèn)題,也考查了空間中的垂直關(guān)系的應(yīng)用問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知拋物線y2=4$\sqrt{3}$x的準(zhǔn)線與雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1兩條漸近線分別交于A,B兩點(diǎn),且|AB|=2,則雙曲線的離心率e為$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.函數(shù)$f(x)=\frac{|x|-a}(a>0,b>0)$的圖象形如漢字“囧”,故稱其為“囧函數(shù)”.下列命題:
①“囧函數(shù)”的值域?yàn)镽;
②“囧函數(shù)”在(0,+∞)上單調(diào)遞增;
③“囧函數(shù)”的圖象關(guān)于y軸對(duì)稱;
④“囧函數(shù)”有兩個(gè)零點(diǎn);
⑤“囧函數(shù)”的圖象與直線y=kx+m(k≠0)至少有一個(gè)交點(diǎn).
正確命題的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知函數(shù)f(x)=4x+$\frac{a}{x}$(x>0,a>0)在x=2時(shí)取得最小值,則實(shí)數(shù)a=16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.設(shè)函數(shù)f(x)=exlnx+$\frac{2{e}^{x-1}}{x}$,證明f(x)>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在平面直角坐標(biāo)系xOy中,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦距為2.
(1)若橢圓C經(jīng)過(guò)點(diǎn)($\frac{\sqrt{6}}{2}$,1),求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)A(-2,0),F(xiàn)為橢圓C的左焦點(diǎn),若橢圓C上存在點(diǎn)P,滿足$\frac{PA}{PF}$=$\sqrt{2}$,求橢圓C的離心率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若a=$\frac{1-cosα}{sinα}$,b=$\frac{1+cosα}{sinα}$,則ab的值是( 。
A.0B.1C.-1D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若函數(shù)f(x)是奇函數(shù).且在x>0時(shí)是增函數(shù),則下列結(jié)論中正確的是( 。
A.f(-1)<f(-2)<f(-3)B.f(-3)<f(-2)<f(-1)C.f(-2)<f(-1)<f(-3)D.f(-3)<f(-1)<f(-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知函數(shù)g(x)=($\frac{1}{2}$)|x-1|,則r=g(2-0.1),s=g(log0.23),t=g(2),則r,s,t的大小關(guān)系是( 。
A.t<r<sB.t<s<rC.s<r<tD.s<t<r

查看答案和解析>>

同步練習(xí)冊(cè)答案