1.已知集合A={2015,2016},非空集合B滿足A∪B={2015,2016},則滿足條件的集合B的個數(shù)是(  )
A.1B.2C.3D.4

分析 根據(jù)題意得到B為A的非空子集,確定出滿足條件的集合B的個數(shù)即可.

解答 解:∵A={2015,2016},非空集合B滿足A∪B={2015,2016},
∴B⊆A,且B≠∅,
則滿足條件的集合B的個數(shù)是22-1=4-1=3,
故選:C.

點(diǎn)評 此題考查了并集及其運(yùn)算,熟練掌握并集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.先化簡,再求值:(2•a${\;}^{\frac{3}{4}}$•b${\;}^{-\frac{2}{3}}$)•(a${\;}^{-\frac{1}{2}}$•b${\;}^{-\frac{5}{3}}$)•(a${\;}^{\frac{3}{4}}$•b${\;}^{\frac{4}{3}}$),其中a=6,b=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)是R上的奇函數(shù),當(dāng)x>0時,f(x)=$\frac{1}{2}$(|x+$\frac{1}{2}$tanα|+|x+tanα|+$\frac{3}{2}$tanα)(α為常數(shù),且-$\frac{π}{2}$<α<$\frac{π}{2}$),若?x∈R,都有f(x-3)≤f(x)恒成立,則實(shí)數(shù)α的取值范圍是-$\frac{π}{4}$≤α<$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知數(shù)列{an}的前n項和${S_n}=\frac{3}{2}{n^2}+\frac{3}{2}n$.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)記${T_n}=\frac{{{a_n}•{a_{n+1}}}}{2^n}$,若對于一切的正整數(shù)n,總有Tn≤m成立,求實(shí)數(shù)m的取值范圍.
(Ⅲ)設(shè)Bn為數(shù)列{bn}的前n項的和,其中${b_n}={2^{a_n}}$,若不等式$\frac{{{B_n}-t{b_n}}}{{{B_{n+1}}+t{b_{n+1}}}}<\frac{1}{16}$對任意的n∈N*恒成立,試求正實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.用反證法證明結(jié)論:“曲線y=f(x)與曲線y=g(x)至少有兩個不同的交點(diǎn)”時,要做的假設(shè)是( 。
A.曲線y=f(x)與曲線y=g(x)至多有兩個不同的交點(diǎn)
B.曲線y=f(x)與曲線y=g(x)至多有一個交點(diǎn)
C.曲線y=f(x)與曲線y=g(x)恰有兩個不同的交點(diǎn)
D.曲線y=f(x)與曲線y=g(x)至少有一個交點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在半徑為r的圓周上任取兩點(diǎn)A,B,則|AB|≥r的概率為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知數(shù)列{an}的前n項和為Sn,且a1=1,當(dāng)n≥2時,Sn=2an
(1)求證數(shù)列{an}為等比數(shù)列,并求出an的通項公式;
(2)設(shè)若bn=an+1-1,設(shè)數(shù)列{an•bn}的前n項和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知θ∈(0,2π)且$cos\frac{θ}{2}=\frac{1}{3}$,則tanθ的值為-$\frac{4\sqrt{2}}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知集合M={x|x2<3x},N={x|lnx<0},則集合M∩N=( 。
A.(-2,0]B.(0,1)C.(2,3]D.(-2,3)

查看答案和解析>>

同步練習(xí)冊答案