17.函數(shù)$f(x)={log_{\frac{1}{2}}}({{x^2}-4})$的單調(diào)遞增區(qū)間為(  )
A.(-∞,-2)B.(2,+∞)C.(-∞,0)D.(0,+∞)

分析 令t=x2-4>0,求得函數(shù)的定義域,由f(x)=${log}_{\frac{1}{2}}$t,本題即求函數(shù)t在定義域內(nèi)的減區(qū)間,再利用二次函數(shù)的性質(zhì)即可得出結(jié)論.

解答 解:令t=x2-4>0,得x<-2,或x>2,
所以函數(shù)的定義域?yàn)閧x|x<-2,或x>2},
且f(x)=${log}_{\frac{1}{2}}$t是定義域上的單調(diào)減函數(shù);
又本題即求函數(shù)t在定義域內(nèi)的減區(qū)間,
利用二次函數(shù)的性質(zhì)可得函數(shù)t在定義域內(nèi)的減區(qū)間為 (-∞,-2),
所以,函數(shù)$f(x)={log_{\frac{1}{2}}}({{x^2}-4})$的單調(diào)遞增區(qū)間為(-∞,-2).
故選:A.

點(diǎn)評(píng) 本題主要考查復(fù)合函數(shù)的單調(diào)性,對(duì)數(shù)函數(shù)、二次函數(shù)的性質(zhì),體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.為了得到函數(shù)$y=sin(3x-\frac{π}{3})$的圖象,只需把函數(shù)y=sin3x的圖象(  )
A.向右平移$\frac{π}{9}$個(gè)單位長度B.向左平移$\frac{π}{9}$個(gè)單位長度
C.向右平移$\frac{π}{3}$個(gè)單位長度D.向左平移$\frac{π}{3}$個(gè)單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.下列五個(gè)正方體圖形中,l是正方體的一條體對(duì)角線,點(diǎn)M、N、P分別為其所在棱的中點(diǎn),能得出l⊥平面MNP的圖形的序號(hào)是①④⑤(寫出所有符合要求的圖形序號(hào)).

請(qǐng)證明你所選序號(hào)其中的一個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.橢圓$\frac{x^2}{25}$+$\frac{y^2}{16}$=1的左、右焦點(diǎn)分別為F1、F2,則橢圓上滿足PF1⊥PF2的點(diǎn)P( 。
A.有2個(gè)B.有4個(gè)C.不一定存在D.一定不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.命題“對(duì)任意x∈R,都有x 2≥ln2”的否定為( 。
A.對(duì)任意x∈R,都有x 2<ln2B.不存在x∈R,都有x 2<ln2
C.存在x∈R,使得x 2≥ln2D.存在x∈R,使得x 2<ln2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓C:$\frac{x^2}{8}+\frac{y^2}{n}=1$的離心率為$\frac{{\sqrt{2}}}{2}$,F(xiàn)是橢圓C的右焦點(diǎn).過點(diǎn)F且斜率為k(k≠0)的直線l與橢圓C交于A,B兩點(diǎn),O是坐標(biāo)原點(diǎn).
(Ⅰ)求n的值;
(Ⅱ)若線段AB的垂直平分線在y軸的截距為$\frac{2}{3}$,求k的值;
(Ⅲ)是否存在點(diǎn)P(t,0),使得PF為∠APB的平分線?若存在,求出t的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若直線l的方向向量為$\overrightarrow{a}$=(1,0,2),平面α的法向量為$\overrightarrow{n}$=(-2,0,-4),則( 。
A.l∥αB.l⊥α
C.l?αD.l與α相交但不垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知直線l:2x-y+m=0,m∈R,圓C:x2+y2=5.
(Ⅰ)當(dāng)m為何值時(shí),l與C無公共點(diǎn);
(Ⅱ)當(dāng)m為何值時(shí),l被C截得的弦長為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知m∈R,直線l:mx-(m2+1)y=4m和圓C:x2+y2-8x+4y+16=0.
(1)求直線l斜率的取值范圍;
(2)直線l與圓C相交于A、B兩點(diǎn),若△ABC的面積為$\frac{8}{5}$,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案