18.在正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為棱AB,BB1的中點(diǎn),則直線BC1與EF所成角的余弦值是(  )
A.$\frac{\sqrt{2}}{4}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{\sqrt{3}}{2}$

分析 以D為原點(diǎn),DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標(biāo)系,利用向量法能求出直線BC1與EF所成角的余弦值.

解答 解:以D為原點(diǎn),DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標(biāo)系,
設(shè)正方體ABCD-A1B1C1D1中棱長為2,
則E(2,1,0),F(xiàn)(2,2,1),B(2,2,0),C1(0,2,2),
$\overrightarrow{B{C}_{1}}$=(-2,0,2),$\overrightarrow{EF}$=(0,1,1),
設(shè)直線BC1與EF所成角為θ,
則cosθ=|cos<$\overrightarrow{B{C}_{1}}$,$\overrightarrow{EF}$>|=$\frac{|\overrightarrow{B{C}_{1}}•\overrightarrow{EF}|}{|\overrightarrow{B{C}_{1}}|•|\overrightarrow{EF}|}$=$\frac{|2|}{\sqrt{8}•\sqrt{2}}$=$\frac{1}{2}$.
∴直線BC1與EF所成角的余弦值是$\frac{1}{2}$.
故選:B.

點(diǎn)評 本題考查異面直線所成角的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)=log3x+x+m在區(qū)間($\frac{1}{3}$,9)上有零點(diǎn),則實(shí)數(shù)m的取值范圍是-11<m<$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,過F2且傾斜角為45°的直線與雙曲線右支交于A,B兩點(diǎn),則該雙曲線離心率的取值范圍是(1,$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知在觀測點(diǎn)P處測得在正東方向A處一輪船正在沿正北方向勻速航行,經(jīng)過1小時(shí)后在觀測點(diǎn)P測得輪船位于北偏東60°方向B處,又經(jīng)過t小時(shí)發(fā)現(xiàn)該輪船在北偏東45°方向C處,則t=$\sqrt{3}-1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.2015年春晚過后,為了研究演員上春晚次數(shù)與受關(guān)注的關(guān)系,某網(wǎng)站對其中一位經(jīng)常上春晚的演員上春晚次數(shù)與受關(guān)注度進(jìn)行了統(tǒng)計(jì),得到如下數(shù)據(jù):
上春晚次數(shù)x(單位:次)12468
粉絲數(shù)量y(單位:萬人)510204080
(1)若該演員的粉絲數(shù)量y與上春晚次數(shù)x滿足線性回歸方程,試求回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$(精確到整數(shù)); 
(2)試根據(jù)此方程預(yù)測該演員上春晚10次時(shí)的粉絲數(shù);   
$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n(\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\stackrel{∧}{y}$-$\stackrel{∧}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)α、β為不重合的平面,m,n為不重合的直線,則下列命題正確的是( 。
A.若m∥α,n∥β,m⊥n,則α⊥βB.若m∥n,n∥α,α∥β,則m∥β
C.若α⊥β,α∩β=n,m⊥n,則m⊥αD.若α∩β=n,m∥α,m∥β,則m∥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在四棱錐P-ABCD中,各側(cè)面是全等的等腰三角形,腰長為4且頂角為30°,底面是正方形(如圖),在棱PB,PC上各有一點(diǎn)M、N,且四邊形AMND的周長最小,點(diǎn)S從A出發(fā)依次沿四邊形AM,MN,ND運(yùn)動(dòng)至點(diǎn)D,記點(diǎn)S行進(jìn)的路程為x,棱錐S-ABCD的體積為V(x),則函數(shù)V(x)的圖象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知直線l1過點(diǎn)P(1,4)且與x軸交于A點(diǎn),直線l2過點(diǎn)Q(3,-1)且與y軸交于B點(diǎn),若l1⊥l2,且$\overrightarrow{AM}=2\overrightarrow{MB}$,則點(diǎn)M的軌跡方程為9x+6y+1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=\;1$(a>0,b>0)的右焦點(diǎn)為F,過F且斜率為$\sqrt{3}$的直線交C于A,B兩點(diǎn),若$\overrightarrow{AF}$=3$\overrightarrow{FB}$,則C的離心率為$\frac{4}{3}$.

查看答案和解析>>

同步練習(xí)冊答案