9.設(shè)函數(shù)f(x)=x2-4x+3,$g(x)=\left\{{\begin{array}{l}{\sqrt{x},x>0}\\{1-{x^2},x≤0}\end{array}}\right.$,則關(guān)于x的方程g[f(x)]=1的實(shí)數(shù)根個(gè)數(shù)為(  )
A.2B.3C.4D.5

分析 令f(x)=t得出g(t)=1的解,再代入f(x)解出方程的根即可.

解答 解:令g(t)=1得t=1或t=0,
∵g[f(x)]=1,∴f(x)=1或f(x)=0.
當(dāng)f(x)=1時(shí),即x2-4x+2=0,解得x=2+$\sqrt{2}$或x=2-$\sqrt{2}$.
當(dāng)f(x)=0時(shí),即x2-4x+3=0,解得x=1或x=3.
故方程g[f(x)]=1有4個(gè)解.
故選:C.

點(diǎn)評(píng) 本題考查了方程根的個(gè)數(shù)判斷,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.設(shè)函數(shù)f(x)=ax3-6x+2(x∈R),若對(duì)于任意x∈[-1,2],都有f(x)≥0成立,則實(shí)數(shù)a的值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.復(fù)數(shù)$\frac{i}{2+i}$在復(fù)平面上對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.如圖在直三棱柱ABC-A1B1C1中,AB⊥AC,AB=AA1=2,AC=$\sqrt{2}$,過(guò)BC的中點(diǎn)D作平面ACB1的垂線(xiàn),交平面ACC1A1于E,則點(diǎn)E到平面BB1C1C的距離為( 。
A.$\frac{\sqrt{2}}{2}$B.$\frac{2\sqrt{2}}{3}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.計(jì)算${(\frac{1}{2})^{{{log}_2}3-1}}$=$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.以A(4,3,1),B(7,1,2),C(5,2,3)三點(diǎn)為頂點(diǎn)的三角形的形狀是(  )
A.等邊三角形B.等腰三角形C.直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知函數(shù)$f(x)=\frac{6}{x}-{log_2}x$,在下列區(qū)間中,包含f(x)零點(diǎn)的區(qū)間是( 。
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.十八屆五中全會(huì)公報(bào)指出:努力促進(jìn)人口均衡發(fā)展,堅(jiān)持計(jì)劃生育的基本國(guó)策,完善人口發(fā)展戰(zhàn)略,全面實(shí)施一對(duì)夫婦可生育兩個(gè)孩子的政策,提高生殖健康、婦幼保健、托幼等公共服務(wù)水平.為了解適齡公務(wù)員對(duì)放開(kāi)生育二胎政策的態(tài)度,某部門(mén)隨機(jī)調(diào)查了200位30到40歲的公務(wù)員,得到情況如表:
男公務(wù)員女公務(wù)員
生二胎8040
不生二胎4040
(1)是否有99%以上的把握認(rèn)為“生二胎與性別有關(guān)”,并說(shuō)明理由;
(2)把以上頻率當(dāng)概率,若從社會(huì)上隨機(jī)抽取甲、乙、丙3位30到40歲的男公務(wù)員,求這三人中至少有一人要生二胎的概率.
P(k2≥k00.0500.0100.001
k03.8416.63510.828
附:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若f(x)是定義在實(shí)數(shù)集上的奇函數(shù).且當(dāng)x>0時(shí)恒有f(x)+xf′(x)>0,則( 。
A.-2f(-2)<-ef(-e)<3f(3)B.-ef(-e)<-2f(-2)<3f(3)C.3f(3)<-ef(-e)<-2f(-2)D.-2f(-2)<3f(3)<-ef(-e)

查看答案和解析>>

同步練習(xí)冊(cè)答案