1.下列結(jié)論中,不正確的是( 。
A.向量$\overrightarrow{AB}$,$\overrightarrow{CD}$共線與向量$\overrightarrow{AB}$∥$\overrightarrow{CD}$意義是相同的
B.若向量$\overrightarrow{AB}$=$\overrightarrow{CD}$,則$\overrightarrow{AB}$∥$\overrightarrow{CD}$
C.若向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=|$\overrightarrow$|,就有$\overrightarrow{a}$=$\overrightarrow$
D.若向量$\overrightarrow{AB}$=$\overrightarrow{CD}$,則向量$\overrightarrow{BA}$=$\overrightarrow{DC}$

分析 由平行向量和共線向量的定義,逐個(gè)選項(xiàng)驗(yàn)證即可.

解答 解:選項(xiàng)A,由向量共線的定義可得向量$\overrightarrow{AB}$,$\overrightarrow{CD}$共線與向量$\overrightarrow{AB}$∥$\overrightarrow{CD}$意義是相同的,故正確;
選項(xiàng)B,當(dāng)向量$\overrightarrow{AB}$=$\overrightarrow{CD}$,則一定有$\overrightarrow{AB}$∥$\overrightarrow{CD}$,故正確;
選項(xiàng)C,向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=|$\overrightarrow$|,但方向不定,故不一定有$\overrightarrow{a}$=$\overrightarrow$,故錯(cuò)誤;
選項(xiàng)D,由向量$\overrightarrow{AB}$=$\overrightarrow{CD}$和相反向量可得向量$\overrightarrow{BA}$=$\overrightarrow{DC}$,故正確.
故選:C.

點(diǎn)評(píng) 本題考查平行向量和共線向量,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.若函數(shù)f(x)=$\sqrt{{x}^{2}-1}$+$\sqrt{a-{x}^{2}}$為偶函數(shù)且非奇函數(shù),則實(shí)數(shù)a的取值范圍為a>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.函數(shù)f(x)=$\sqrt{3x-1}$的定義域是$[\frac{1}{3},+∞)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知α為第三象限角,且sinα=-$\frac{3}{5}$,求cosα與tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.g(x)=$\frac{6}{|x|+3}$-1定義域[m,n],且m,n為整數(shù),相應(yīng)的值域是[0,1],滿足條件的整數(shù)對(duì)(m,n)共有( 。
A.4對(duì)B.5對(duì)C.6對(duì)D.7對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在△ABC中,已知三角形的周長(zhǎng)是16,且已知B點(diǎn)與C點(diǎn)的坐標(biāo)為B(-3,0)、C(3,0).
(1)求A點(diǎn)的軌跡C的方程;
(2)已知直線y=kx-5與軌跡C的圖象相交,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.cos15°-sin15°=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知在數(shù)列{an}中,a1=3,前n項(xiàng)和為Sn,且an=Sn-1-2n-1(n≥2).
(1)求a2,a3及S2,S3的值;
(2)若存在常數(shù)λ,使得數(shù)列{$\frac{{S}_{n}+λ}{{2}^{n}}$}成等差數(shù)列,求出λ的值,并求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.對(duì)任意的實(shí)數(shù)x,不等式(a2-1)x2+(a-1)x-1<0都成立,則實(shí)數(shù)a的取值范圍是( 。
A.-$\frac{3}{5}$<a<1B.-$\frac{3}{5}$<a≤1C.-$\frac{3}{5}$≤a≤1D.-$\frac{3}{5}$≤a<1

查看答案和解析>>

同步練習(xí)冊(cè)答案