3.已知點A(2,-1,5),B(t,t+1,t-1),則|AB|取得最小值時,t的值等于( 。
A.$\sqrt{15}$B.3$\sqrt{2}$C.$\sqrt{30}$D.2

分析 利用兩點間距離公式求出|AB|的表達式,再利用配方法能求出結(jié)果.

解答 解:∵A(2,-1,5),B(t,t+1,t-1),
∴|AB|=$\sqrt{(t-2)^{2}+(t+2)^{2}+(t-6)^{2}}$=$\sqrt{3{t}^{2}-12t+44}$=$\sqrt{3(t-2)^{2}+32}$,
∴t=2時,|AB|取得最小值4$\sqrt{2}$.
故選:D.

點評 本題考查兩點間距離公式的應(yīng)用,是基礎(chǔ)題,解題時要認真審題,注意配方法的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,四棱錐P-ABCD底面是正方形,PA⊥底面ABCD,E,F(xiàn)分別為PA,PD中點.
(1)求證:EF∥面PBC
(2)求證:平面PBC⊥平面PAB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知圓O1:(x+1)2+(y-1)2=25與圓O2:(x-5)2+(y-b)2=65相交,且公共弦長為8,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若關(guān)于x的不等式xlnx+x-kx+3k>0對任意x>1恒成立,則整數(shù)k的最大值是( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.不等式ax2-2ax-4<0對一切實數(shù)都成立.求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.過點A(-3,4)的直線l與兩坐標(biāo)軸圍成的三角形的面積為3,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=sin(2x+θ)-$\sqrt{3}$cos(2x+θ)(|θ|<$\frac{π}{2}$)的圖象關(guān)于原點對稱,則y=f(x)在下列哪個區(qū)間上是減函數(shù)( 。
A.(0,$\frac{π}{2}$)B.($\frac{π}{2}$,π)C.($\frac{π}{4}$,$\frac{π}{2}$)D.(-$\frac{π}{4}$,$\frac{π}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如果α與β的正切值可能相等,我們稱這兩個角是“親情角”,已知tan(β-$\frac{π}{4}$)=2,下列選項中的角與β互為“親情角”的是( 。
A.tanα=3B.sinα=$\frac{\sqrt{10}}{10}$C.tan2(α+$\frac{π}{4}$)=$\frac{1}{4}$D.cosα=$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.方程|x+y|=$\sqrt{(x-1)^{2}+(y-1)^{2}}$所表示的曲線是雙曲線.

查看答案和解析>>

同步練習(xí)冊答案