10.已知sinβ=msin(2α+β),其中m≠1,α+β≠kπ+$\frac{π}{2}$,α≠kπ+$\frac{π}{2}$,k∈Z.求證:tan(α+β)=$\frac{1+m}{1-m}$tanα

分析 由條件利用兩角差的正弦公式、同角三角函數(shù)的基本關(guān)系,證得要證的等式成立.

解答 證明:∵m≠1,α+β≠kπ+$\frac{π}{2}$,α≠kπ+$\frac{π}{2}$,k∈Z,sinβ=msin(2α+β),
∴sin[(α+β)-α]=msin[(α+β)+α],
即 sin(α+β)cosα-cos(α+β)sinα=msin(α+β)cosα+mcos(α+β)sinα,
∴(1-m)sin(α+β)cosα=(m+1)cos(α+β)sinα,
∴tan(α+β)=$\frac{1+m}{1-m}$tanα 成立.

點(diǎn)評(píng) 本題主要考查同角三角函數(shù)的基本關(guān)系,兩角差的正弦公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如果a2+b2=$\frac{1}{2}$c2,那么直線ax+by+c=0與圓x2+y2=1的位置關(guān)系是( 。
A.相交B.相切C.相離D.相交或相切

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在數(shù)學(xué)解題中,常會(huì)碰到形如“$\frac{x+y}{1-xy}$”的結(jié)構(gòu),這時(shí)可類比正切的和角公式.如:設(shè)a,b是非零實(shí)數(shù),且滿足$\frac{asin\frac{π}{5}+bcos\frac{π}{5}}{acos\frac{π}{5}-bsin\frac{π}{5}}$=tan$\frac{8π}{15}$,則$\frac{a}$=( 。
A.4B.$\sqrt{15}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知命題p:a2<a(a∈R),命題q:對(duì)任意x∈R,都有x2+4ax+1≥0(a∈R)
(1)若命題p且q為假,p或q為真,求實(shí)數(shù)a的取值范圍;
(2)若命題p,q為真時(shí),實(shí)數(shù)a的取值集合分別為集合M和集合N,則“x∈M或x∈N”是“x∈(M∩N)”的什么條件?并說明理由(提示:充分不必要條件,必要不充分條件,充要條件,既不充分又不必要條件)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知數(shù)列{an}滿足an=1-$\frac{1}{{a}_{n+1}}$,若a2015=2,則a4=( 。
A.-$\frac{1}{2}$B.2C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.各項(xiàng)均為正數(shù)的等比數(shù)列{an}的公比q≠1,a2,$\frac{1}{2}$a3,a1成等差數(shù)列,則$\frac{{a}_{3}{a}_{4}+{a}_{2}{a}_{6}}{{a}_{2}{a}_{6}+{a}_{4}{a}_{5}}$=$\frac{\sqrt{5}-1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知在數(shù)列{an}中,a1=5,a2=2,an=2an-1+3an-2(n≥3).對(duì)于這個(gè)數(shù)列的遞推公式作一研究,能否得出它的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=2lnx+a(x-$\frac{1}{x}$).
(1)若函數(shù)f(x)在(1,f(1))處的切線方程為y=4x-4,求實(shí)數(shù)a的值;
(2)若(1-x)f(x)≥0,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)f(x)=$\left\{\begin{array}{l}(a-1){x}^{2}-2ax+b+2,x≤0\\(a-1)x+b+2,x>0\end{array}\right.$,則以下命題中正確的是(1)(4)(把所有真命題的序號(hào)都填上)
(1)若a=b=2,則不等式f(x)<9的解集為(-1,5);
(2)若a=b=2,則函數(shù)f(x)為單調(diào)函數(shù);
(3)對(duì)任意實(shí)數(shù)a,b,函數(shù)f(x)均為單調(diào)函數(shù);
(4)若不等式f(x)<0的解集為非空集合D,且D⊆(-1,2),則z=2a-b的取值范圍為(4,+∞);
(5)若不等式f(x)<0的解集不可能為空集.

查看答案和解析>>

同步練習(xí)冊(cè)答案