14.如圖,四邊形ABCD是菱形,PD⊥平面ABCD,PD∥BE,AD=PD=2BE=2,∠DAB=60°,點(diǎn)F為PA的中點(diǎn).
(Ⅰ)求證:EF∥平面ABCD;
(Ⅱ)求證:平面PAE⊥平面PAD;
(Ⅲ)求三棱錐P-ADE的體積.

分析 (Ⅰ)取AD中點(diǎn)G,連接FG,BG,則可證四邊形BGFE為平行四邊形.故EF∥BG,從而EF∥平面ABCD;
(II)由△ABD是等邊三角形可得BG⊥AD,由PD⊥平面ABCD可得BG⊥PD,故BG⊥平面PAD,由EF∥BG可證EF⊥平面PAD,從而平面PAE⊥平面PAD;
(III)V棱錐P-ADE=V棱錐E-ADP=$\frac{1}{3}$S△PAD•EF.

解答 解:(Ⅰ)取AD中點(diǎn)G,連接FG,BG,∵點(diǎn)F為PA的中點(diǎn),
∴FG∥PD且$FG=\frac{1}{2}PD$.
∵BE∥PD,且$BE=\frac{1}{2}PD$,
∴BE∥FG,BE=FG,
∴四邊形BGFE為平行四邊形.
∴EF∥BG,又∵EF?平面ABCD,BG?平面ABCD,
∴EF∥平面ABCD.
(Ⅱ)連接BD.
∵四邊形ABCD為菱形,∠DAB=60°,∴△ABD為等邊三角形.
∵G為AD中點(diǎn),∴BG⊥AD,
∵PD⊥平面ABCD,BG?平面ABCD,
∴PD⊥BG,又∵PD∩AD=D,AD?平面PAD,PD?平面PAD,
∴BG⊥平面PAD.
∵四邊形BGFE為平行四邊形,∴EF∥BG,
∴EF⊥平面PAD,又∵EF?平面PAE,
∴平面PAE⊥平面PAD.
(Ⅲ)∵△ABD為等邊三角形,AD=2,∴BG=$\sqrt{3}$.
∵${S_{△PAD}}=\frac{1}{2}PD•AD=2$.$EF=BG=\sqrt{3}$,∴V棱錐P-ADE=V棱錐E-ADP=$\frac{1}{3}$S△PAD•EF=$\frac{2\sqrt{3}}{3}$.

點(diǎn)評 本題考查了線面平行的判定,面面垂直的判定,棱錐的體積計算,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在△ABC中,∠BAD=30°,AB=4,AC=2,點(diǎn)D在BC上,且BC=2BD
(1)求BC的長;
(2)求tan(B+60°)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.直線y=kx-2交拋物線y2=8x于A、B兩點(diǎn),若AB中點(diǎn)橫坐標(biāo)為2,則|AB|為(  )
A.$\sqrt{15}$B.$2\sqrt{15}$C.$\sqrt{42}$D.$3\sqrt{15}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.橢圓$\frac{x^2}{3}+\frac{y^2}{5}=1$的焦距是( 。
A.$2\sqrt{2}$B.$4\sqrt{2}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在平面直角坐標(biāo)系中,橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個焦點(diǎn)為F($\sqrt{2}$,0),離心率為$\frac{\sqrt{6}}{3}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過原點(diǎn)的直線與橢圓C交于A,B兩點(diǎn)(A,B不是橢圓C的頂點(diǎn)),點(diǎn)D在橢圓C上,且AD⊥AB,直線BD與x軸、y軸分別交于M、N兩點(diǎn),設(shè)直線BD,AM的斜率分別為k1,k2,證明:存在常數(shù)λ使得k1=λk2,并求出λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.一個幾何體的三視圖如圖所示,則該幾何體的表面積為(  )
A.$\frac{3}{2}$B.$\frac{{6+\sqrt{2}+\sqrt{6}}}{2}$C.$\frac{1}{2}$D.$\frac{{3+\sqrt{2}+\sqrt{6}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.某幾何體的正視圖、側(cè)(左)視圖、俯視圖如圖所示,若該幾何體各個頂點(diǎn)在同一個球面上,則該球體的表面積是(  )
A.B.12πC.24πD.32π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{1}{3}$x3-x2+ax,a∈R
(1)討論函數(shù)f(x)在(0,+∞)上的單凋性;
(2)設(shè)函數(shù)g(x)=$\frac{1}{3}$x3+(a-1)x-alnx,問:在定義域內(nèi)是否存在三個不同的自變量xi(i=1,2,3),使得f(xi)-g(xi)的值相等?若存在,求出a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在梯形PBCD中,A是PB的中點(diǎn),DC∥PB,DC⊥CB,且PB=2BC=2DC=4(如圖1所示),將三角形PAD沿AD翻折,使PB=2(如圖2所示),E是線段PD上的一點(diǎn),且PE=2DE.
(Ⅰ)求四棱錐P-ABCD的體積;
(Ⅱ)在線段AB上是否存在一點(diǎn)F,使AE∥平面PCF?若存在,請指出點(diǎn)F的位置并證明,若不存在請說明理由.

查看答案和解析>>

同步練習(xí)冊答案