20.已知an=cos$\frac{2nπ}{3}$,Sn是數(shù)列{an}的前n項(xiàng)和,則S2015=( 。
A.-2B.-1C.0D.1

分析 由f(n)=cos$\frac{2nπ}{3}$是以T=3為周期的周期函數(shù)可得數(shù)列每相鄰三項(xiàng)的和,則答案可求.

解答 解:an=cos$\frac{2nπ}{3}$
f(n)=cos$\frac{2nπ}{3}$是以T=3為周期的周期函數(shù),
∴a1+a2+a3=-$\frac{1}{2}$-$\frac{1}{2}$+1=0,

a3k+1+a3k+2+a3k+3=0,
則S2015=a1+a2+a3+a4+…+a2015
=0×671+(-$\frac{1}{2}$-$\frac{1}{2}$)=-1.
故選B.

點(diǎn)評(píng) 本題考查了三角函數(shù)的周期性,考查了數(shù)列的求和,關(guān)鍵是對(duì)規(guī)律的發(fā)現(xiàn),是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,AD⊥AB,BC∥AD,AD=2AB=2BC=2.求證:PC⊥CD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-x+10,x>a}\\{{x}^{2}+2x,x≤a}\end{array}\right.$,若對(duì)任意b,總存在實(shí)數(shù)x0,使得f(x0)=b成立,則實(shí)數(shù)a的取值范圍是[-5,11].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,an+an+1=2n-1,則Sn=$\left\{\begin{array}{l}{\frac{n(n-1)}{2},n為偶數(shù)}\\{\frac{{n}^{2}-n+2}{2},n為奇數(shù)}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.設(shè)曲線y=xn+1(n∈N*)在點(diǎn)(1,1)處的切線與y軸的交點(diǎn)的縱坐標(biāo)為yn,令bn=2yn,b1•b2•…b2010的值為22010•2010!.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)如圖是某幾何體的三視圖,求該幾何體的體積和表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.?dāng)?shù)列{an}滿足a1=1,nan+1=(n+1)an+n(n+1),n∈N*,求an

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知f(x)=x2+4x+1,
(1)求f(2x-1)的解析式;
(2)當(dāng)x=4時(shí),求f(x)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.在平面直角坐標(biāo)系內(nèi),點(diǎn)P(a,b)的坐標(biāo)滿足a≠b,且a,b都是集合{1,2,3,4,5,6}中的元素,又點(diǎn)P到原點(diǎn)的距離|OP|≥5,則這樣的點(diǎn)P的個(gè)數(shù)為20.

查看答案和解析>>

同步練習(xí)冊(cè)答案