20.命題“?x∈R,x2+2x+a≤0”的否定是( 。
A.?x∈R,x2+2x+a≤0B.?x∈R,x2+2x+a>0C.?x∈R,x2+2x+a>0D.?x∈R,x2+2x+a≤0

分析 利用特稱命題的否定是全稱命題,寫出結(jié)果即可.

解答 解:因為特稱命題的否定是全稱命題,所以命題“?x∈R,x2+2x+a≤0”的否定是:?x∈R,x2+2x+a>0.
故選:C.

點評 本題考查命題的否定,特稱命題與全稱命題的否定關(guān)系,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知隨機變量ξ服從正態(tài)分布N(μ,σ2)(μ>0),且p(ξ<2μ)=0.8,則p(μ<ξ<2μ)=0.3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)=3sin(ωx+φ)(ω>0,0≤φ<π)的部分圖象如圖所示,則該函數(shù)的解析式為f(x)=$3sin(\frac{π}{4}x+\frac{π}{4})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知$sinα=\frac{3}{5}$,且α是第一象限角.
(1)求cosα的值;
(2)求tan(π+α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.對于任意的n∈N*,記集合En={1,2,3,…,n},Pn=$\left\{{x\left|{x=\frac{a}{{\sqrt}},a∈{E_n},b∈{E_n}}\right.}\right\}$.若集合A滿足下列條件:①A⊆Pn;②?x1,x2∈A,且x1≠x2,不存在k∈N*,使x1+x2=k2,則稱A具有性質(zhì)Ω.
如當(dāng)n=2時,E2={1,2},P2=$\{1,2,\frac{1}{{\sqrt{2}}},\frac{2}{{\sqrt{2}}}\}$.?x1,x2∈P2,且x1≠x2,不存在k∈N*,使x1+x2=k2,所以P2具有性質(zhì)Ω.
(Ⅰ)寫出集合P3,P5中的元素個數(shù),并判斷P3是否具有性質(zhì)Ω.
(Ⅱ)證明:不存在A,B具有性質(zhì)Ω,且A∩B=∅,使E15=A∪B.
(Ⅲ)若存在A,B具有性質(zhì)Ω,且A∩B=∅,使Pn=A∪B,求n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知實數(shù)x、y滿足$\left\{\begin{array}{l}{x-y-2≥0}\\{x+y-6≤0}\\{x-2y-2≤0}\end{array}\right.$,目標(biāo)函數(shù)z=x+ay.
(1)當(dāng)a=-2時,求目標(biāo)函數(shù)z的取值范圍;
(2)若使目標(biāo)函數(shù)取得最小值的最優(yōu)解有無數(shù)個,求$\frac{y}{x-a}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知定義域為R的函數(shù)f(x)=$\frac{{-{2^x}+b}}{{{2^{x+1}}+a}}$(a,b是常數(shù))是奇函數(shù).
(1)求函數(shù)f(x)的解析式;
(2)判斷函數(shù)f(x)的單調(diào)性,并證明你的結(jié)論;
(3)若對于任意$x∈[{\frac{1}{2},3}]$都有f(kx2)+f(2x-1)>0成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知正方體ABCD-A1B1C1D1,下列向量的數(shù)量積不為0的是(  )
A.$\overrightarrow{A{D}_{1}}•\overrightarrow{{B}_{1}C}$B.$\overrightarrow{B{D}_{1}}•\overrightarrow{AC}$C.$\overrightarrow{B{D}_{1}}•\overrightarrow{BC}$D.$\overrightarrow{AB}•\overrightarrow{A{D}_{1}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)i為虛數(shù)單位,則復(fù)數(shù)Z=$\frac{5+i}{1-i}$的共軛復(fù)數(shù)$\overline{Z}$為( 。
A.2-3iB.-2-3iC.-2+3iD.2+3i

查看答案和解析>>

同步練習(xí)冊答案