12.在△ABC中,|$\overrightarrow{AB}$|=|$\overrightarrow{CA}$+$\overrightarrow{CB}$|,|$\overrightarrow{CA}$|=4,|$\overrightarrow{CB}$|=3,若$\overrightarrow{BP}$=2$\overrightarrow{PA}$,則$\overrightarrow{CP}$•$\overline{AB}$的值為( 。
A.$\frac{23}{3}$B.-$\frac{7}{2}$C.-$\frac{23}{3}$D.-8

分析 先判斷△ABC以C為直角的直角三角形,再根據(jù)向量的加減以及向量的數(shù)量積即可求出.

解答 解:∵|$\overrightarrow{AB}$|=|$\overrightarrow{CA}$+$\overrightarrow{CB}$|,|$\overrightarrow{CA}$|=4,|$\overrightarrow{CB}$|=3,
∴△ABC以C為直角的直角三角形,
∴$\overrightarrow{CP}=\overrightarrow{CB}+\overrightarrow{BP}=\overrightarrow{CB}+\frac{2}{3}\overrightarrow{BA}$=$\overrightarrow{CB}$+$\frac{2}{3}(\overrightarrow{CA}-\overrightarrow{CB})$=$\frac{2}{3}$$\overrightarrow{CA}$+$\frac{1}{3}$$\overrightarrow{CB}$,
∴$\overrightarrow{CP}$•$\overline{AB}$=($\frac{2}{3}$$\overrightarrow{CA}$+$\frac{1}{3}$$\overrightarrow{CB}$)($\overrightarrow{CB}-\overrightarrow{CA}$)=$\frac{2}{3}\overrightarrow{CA}•\overrightarrow{CB}$-$\frac{2}{3}{\overrightarrow{CA}}^{2}$+$\frac{1}{3}$${\overrightarrow{C{B}^{\;}}}^{2}$-$\overrightarrow{CA}•\overrightarrow{CB}$=-$\frac{2}{3}{\overrightarrow{CA}}^{2}$+$\frac{1}{3}{\overrightarrow{C{B}^{\;}}}^{2}$=-$\frac{2}{3}×16$+$\frac{1}{3}×9$=-$\frac{23}{3}$
故選:C.

點評 本題考查了向量的加減的幾何意義以及向量的數(shù)量積的運算,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)全集U={1,2,3,4},集合A={1,3},B={2,3},則B∩∁UA={2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知定義域為R的單調(diào)減函數(shù)f(x)是奇函數(shù),當(dāng)x>0時,f(x)=$\frac{x}{3}$-2x
(Ⅰ)求f(0)的值;
(Ⅱ)求f(x)的解析式;
(Ⅲ)若對任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=x3-3x2+1,g(x)=$\left\{\begin{array}{l}{x+\frac{1}{4x},x>0}\\{-x^2-6x-8,x≤0}\end{array}\right.$,則方程g[f(x)]-1=0的根的個數(shù)為( 。
A.3個B.4個C.5個D.6個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)全集為R,集合A={x|-1≤x<3},B={x|y=$\sqrt{x-2}$+lg(x-1)};
(Ⅰ)求A∪B,∁R(A∩B);
(Ⅱ)若集合C={x|2x+a>0},滿足B∪C=C,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知$|\overrightarrow a|=4$,$|\overrightarrow b|=5$,$|\overrightarrow a+\overrightarrow b|=\sqrt{21}$,則$\overrightarrow a•\overrightarrow b$=(  )
A.-8B.-10C.10D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.向量$\overrightarrow{e_1},\;\overrightarrow{e_2},\;\overrightarrow a,\;\overrightarrow b$在正方形網(wǎng)格中的位置如圖所示,則$\overrightarrow a-\overrightarrow b$=( 。
A.$-4\overrightarrow{e_1}-2\overrightarrow{e_2}$B.$-2\overrightarrow{e_1}-4\overrightarrow{e_2}$C.$\overrightarrow{e_1}-3\overrightarrow{e_2}$D.$3\overrightarrow{e_1}-\overrightarrow{e_2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知$sin(π+α)=-\frac{1}{2}$,那么$cos(\frac{3}{2}π+α)$=( 。
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知拋物線C:y2=8x的焦點F與雙曲線E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一個焦點重合,C的準(zhǔn)線與E交于A,B,若|$\overrightarrow{AB}$|=6,則E的方程為x2-$\frac{{y}^{2}}{3}$=1.

查看答案和解析>>

同步練習(xí)冊答案