分析 (1)連接BC1,DC1,由已知推導(dǎo)出MN$\underset{∥}{=}$$\frac{1}{2}$DC1,由此能證明MN∥平面CDD1C1.
(2)連接EF,B1D1,推導(dǎo)出四邊形ABEF為平行四邊形,從而AF∥BE,由題意FG∥BD,由此能證明平面EBD∥平面FGA.
解答 證明:(1)連接BC1,DC1,
∵四邊形BCC1B1為正方形,N為B1C的中點(diǎn),
∴N在BC1上,且N為BC1的中點(diǎn).
又∵M(jìn)為BD的中點(diǎn),∴MN$\underset{∥}{=}$$\frac{1}{2}$DC1.
又MN?平面CDD1C1,DC1?平面CDD1C1,
∴MN∥平面CDD1C1.(6分)
(2)連接EF,B1D1,則EF$\underset{∥}{=}$AB.
∴四邊形ABEF為平行四邊形,∴AF∥BE.
又由題意知FG∥B1D1,B1D1∥BD,∴FG∥BD.
又∵AF∩FG=F,BE∩BD=B,
∴平面EBD∥平面FGA.(12分)
點(diǎn)評 本題考查線面平行、面面平行的證明,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,4] | B. | [2,4) | C. | [2,4] | D. | [2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $-\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com