17.如圖,在正方體ABCD-A1B1C1D1中,E,F(xiàn),G,M,N分別是B1C1,A1D1,A1B1,BD,B1C的中點(diǎn),求證:
(1)MN∥平面CDD1C1
(2)平面EBD∥平面FGA.

分析 (1)連接BC1,DC1,由已知推導(dǎo)出MN$\underset{∥}{=}$$\frac{1}{2}$DC1,由此能證明MN∥平面CDD1C1
(2)連接EF,B1D1,推導(dǎo)出四邊形ABEF為平行四邊形,從而AF∥BE,由題意FG∥BD,由此能證明平面EBD∥平面FGA.

解答 證明:(1)連接BC1,DC1,
∵四邊形BCC1B1為正方形,N為B1C的中點(diǎn),
∴N在BC1上,且N為BC1的中點(diǎn).
又∵M(jìn)為BD的中點(diǎn),∴MN$\underset{∥}{=}$$\frac{1}{2}$DC1
又MN?平面CDD1C1,DC1?平面CDD1C1,
∴MN∥平面CDD1C1.(6分)
(2)連接EF,B1D1,則EF$\underset{∥}{=}$AB.
∴四邊形ABEF為平行四邊形,∴AF∥BE.
又由題意知FG∥B1D1,B1D1∥BD,∴FG∥BD.
又∵AF∩FG=F,BE∩BD=B,
∴平面EBD∥平面FGA.(12分)

點(diǎn)評 本題考查線面平行、面面平行的證明,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)y=$\sqrt{{x}^{2}-2x-3}$的定義域?yàn)椋ā 。?table class="qanwser">A.[-1,3]B.(-∞,-1)∪(3,+∞)C.(-1,3)D.(-∞,-1]∪[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知Sn是數(shù)列{an}的前n項(xiàng)和,a1=2,Sn+1=$\frac{1}{2}$Sn+2(n∈N*),則Sn的取值范圍是( 。
A.(2,4]B.[2,4)C.[2,4]D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=2sin(ωx),其中常數(shù)ω>0;
(1)若y=f(x)在$[-\frac{π}{4},\frac{2π}{3}]$上單調(diào)遞增,求ω的取值范圍;
(2)令ω=4,將函數(shù)y=f(x)的圖象向左平移$\frac{π}{12}$個(gè)單位,再向上平移1個(gè)單位,得到函數(shù)y=g(x)的圖象,區(qū)間[a,b](a,b∈R且a<b)滿足:y=g(x)在[a,b]上至少含有20個(gè)零點(diǎn),在所有滿足上述條件的[a,b]中,求b-a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知拋物線C:y2=2px(p>0)上的點(diǎn)(2,a)到焦點(diǎn)F的距離為3.
(Ⅰ)求拋物線的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)不過原點(diǎn)O的直線l與該拋物線相交于點(diǎn)P、Q,直線OP、PQ、OQ的斜率滿足kOP+kPQ+kOQ=0,且△OPQ的面積為$\sqrt{5}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.冪函數(shù)y=f(x)的圖象過點(diǎn)$(\frac{1}{2},4)$,那么f(4)的值為$\frac{1}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.函數(shù)f(x)=x2-ax+a(x∈R),數(shù)列$\{a_n^{\;}\}$的前n項(xiàng)和Sn=f(n),且f(x)同時(shí)滿足:①不等式f(x)≤0的解集有且只有一個(gè)元素;②在定義域內(nèi)存在0<x1<x2,使得不等式f(x1)>f(x2)成立.
(1)求函數(shù)f(x)的表達(dá)式;     
(2)求數(shù)列$\{a_n^{\;}\}$的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.sin182°cos28°-cos2°sin28°的值為(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)命題p:存在x0∈(-2,+∞),使得6+x0=5.命題q:對任意x∈(-∞,0),x2+$\frac{4}{{x}^{2}}$≥4恒成立.
(1)寫出命題p的否定.
(2)判斷命題非p,p或q,p且q的真假,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案