6.sin182°cos28°-cos2°sin28°的值為( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

分析 直接利用誘導(dǎo)公式以及兩角和的正弦函數(shù)化簡求解即可.

解答 解:sin182°cos28°-cos2°sin28°=-sin2°cos28°-cos2°sin28°=-sin30°=-$\frac{1}{2}$.
故選:B.

點(diǎn)評 本題考查兩角和與差的三角函數(shù),誘導(dǎo)公式的應(yīng)用,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若(2x-1)8的展開式二項(xiàng)系數(shù)最大項(xiàng)是mxn,則m+n=74.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在正方體ABCD-A1B1C1D1中,E,F(xiàn),G,M,N分別是B1C1,A1D1,A1B1,BD,B1C的中點(diǎn),求證:
(1)MN∥平面CDD1C1
(2)平面EBD∥平面FGA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.下列結(jié)論:
①若命題p:存在x∈R,tan x=2;命題q:任意x∈R,x2-x+$\frac{1}{2}$>0.則命題“p且(非q)”是假命題;
②已知直線l1:ax+3y-1=0,l2:x+by+1=0,則l1⊥l2的充要條件是$\frac{a}$=-3;
③設(shè)F1,F(xiàn)2是雙曲線C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的兩個(gè)焦點(diǎn),P是C上一點(diǎn),若|PF1|+|PF2|=6a,且△PF1F2的最小內(nèi)角為30°,則C的離心率為$\sqrt{3}$.
④設(shè)正實(shí)數(shù)x,y,z滿足x2-3xy+4y2-z=0,則當(dāng)$\frac{xy}{z}$取得最大值時(shí),$\frac{2}{x}$+$\frac{1}{y}$-$\frac{2}{z}$的最大值為1.
其中正確結(jié)論的序號為①③④.(把你認(rèn)為正確結(jié)論的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)$y=2sin(\frac{π}{3}-x)-cos(\frac{π}{6}+x)(0≤x≤π)$的值域是( 。
A.$[-1,\frac{{\sqrt{3}}}{2}]$B.[-1,1]C.$[-\frac{{\sqrt{3}}}{2},\frac{{\sqrt{3}}}{2}]$D.$[-\frac{{\sqrt{3}}}{2},1]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知集合$A=\left\{{\left.x\right|x=\frac{k}{2},k∈Z}\right\},B=\left\{{\left.x\right|x=\frac{k}{4},k∈Z}\right\}$,則( 。
A.A⊆BB.B⊆A
C.A=BD.A與B的關(guān)系不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=x3-$\frac{1}{2}$x2-2x+c
(1)當(dāng)c=1時(shí),求y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(2)若當(dāng)x∈[-1,2],不等式f(x)<c2恒成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)y=sin2x+cos2x在[0,π]上的單調(diào)遞減區(qū)間為[$\frac{π}{8}$,$\frac{5π}{8}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.某幾何體的三視圖如圖所示,則該幾何體外接球的表面積為(  )
A.B.πC.$\frac{π}{2}$D.

查看答案和解析>>

同步練習(xí)冊答案