5.已知函數(shù)f(x)=2sin(ωx),其中常數(shù)ω>0;
(1)若y=f(x)在$[-\frac{π}{4},\frac{2π}{3}]$上單調(diào)遞增,求ω的取值范圍;
(2)令ω=4,將函數(shù)y=f(x)的圖象向左平移$\frac{π}{12}$個單位,再向上平移1個單位,得到函數(shù)y=g(x)的圖象,區(qū)間[a,b](a,b∈R且a<b)滿足:y=g(x)在[a,b]上至少含有20個零點,在所有滿足上述條件的[a,b]中,求b-a的最小值.

分析 (1)根據(jù)三角函數(shù)的單調(diào)性的性質(zhì)建立不等式的關(guān)系進(jìn)行求解即可.
(2)根據(jù)三角函數(shù)的圖象關(guān)系,求出函數(shù)的解析式,利用三角函數(shù)的性質(zhì)進(jìn)行求解即可.

解答 解:(1)因為ω>0,根據(jù)題意有 $\left\{{\begin{array}{l}{-\frac{π}{4}ω≥-\frac{π}{2}}\\{\frac{2π}{3}ω≤\frac{π}{2}}\end{array}}\right.⇒0<ω≤\frac{3}{4}$….(6分),
(2)f(x)=2sin(4x),$g(x)=2sin(4(x+\frac{π}{12}))+1=2sin(4x+\frac{π}{3})+1$$g(x)=0⇒sin(4x+\frac{π}{3})=-\frac{1}{2}⇒x=\frac{1}{2}kπ-\frac{π}{8}$或$x=\frac{1}{2}kπ+\frac{5}{24}π,k∈Z$,
即g(x)的零點相離間隔依次為$\frac{π}{3}$和$\frac{π}{6}$,
故若y=g(x)在[a,b]上至少含有20個零點,則b-a的最小值為$10×\frac{π}{6}+9×\frac{π}{3}=\frac{14π}{3}$…(14分)

點評 本題主要考查三角函數(shù)的單調(diào)性和函數(shù)零點的應(yīng)用,根據(jù)條件建立不等式關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.判斷下列函數(shù)是否具有奇偶性:
(1)f(x)=x+x3+x5;
(2)f(x)=x2,x∈(-1,3);
(3)f(x)=-x2;
(4)f(x)=5x+2;
(5)f(x)=(x+1)(x-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若(2x-1)8的展開式二項系數(shù)最大項是mxn,則m+n=74.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若函數(shù)y=$\frac{ax+3}{x-2}$在區(qū)間(2,+∞)上單調(diào)遞增,則a的取值范圍是a<-$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知$\overrightarrow{a}$=(1,-2),$\overrightarrow$=(1,λ),且$\overrightarrow{a}$與$\overrightarrow$的夾角θ為銳角,則實數(shù)λ的取值范圍是( 。
A.(-∞,-2)∪(-2,$\frac{1}{2}$)B.($\frac{1}{2}$,+∞)C.(-2,$\frac{2}{3}$)∪($\frac{2}{3}$,+∞)D.(-∞,$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知$\frac{a}{sinA}=\frac{{\sqrt{3}cosB}}$.
(Ⅰ)求角B的值;
(Ⅱ)求sinA+sinC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在正方體ABCD-A1B1C1D1中,E,F(xiàn),G,M,N分別是B1C1,A1D1,A1B1,BD,B1C的中點,求證:
(1)MN∥平面CDD1C1
(2)平面EBD∥平面FGA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.下列結(jié)論:
①若命題p:存在x∈R,tan x=2;命題q:任意x∈R,x2-x+$\frac{1}{2}$>0.則命題“p且(非q)”是假命題;
②已知直線l1:ax+3y-1=0,l2:x+by+1=0,則l1⊥l2的充要條件是$\frac{a}$=-3;
③設(shè)F1,F(xiàn)2是雙曲線C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的兩個焦點,P是C上一點,若|PF1|+|PF2|=6a,且△PF1F2的最小內(nèi)角為30°,則C的離心率為$\sqrt{3}$.
④設(shè)正實數(shù)x,y,z滿足x2-3xy+4y2-z=0,則當(dāng)$\frac{xy}{z}$取得最大值時,$\frac{2}{x}$+$\frac{1}{y}$-$\frac{2}{z}$的最大值為1.
其中正確結(jié)論的序號為①③④.(把你認(rèn)為正確結(jié)論的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)y=sin2x+cos2x在[0,π]上的單調(diào)遞減區(qū)間為[$\frac{π}{8}$,$\frac{5π}{8}$].

查看答案和解析>>

同步練習(xí)冊答案