分析 (1)使用余弦定理列方程解出b;
(2)代入面積公式S=$\frac{1}{2}$acsinB求出.
解答 解:(1)∵a+c=5,∴a2+c2=25-2ac=13.
∵cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{1}{2}$,∴$\frac{13-^{2}}{12}$=$\frac{1}{2}$,解得b=$\sqrt{7}$.
(2)S=$\frac{1}{2}acsinB$=$\frac{1}{2}×6×\frac{\sqrt{3}}{2}$=$\frac{3\sqrt{3}}{2}$.
點(diǎn)評(píng) 本題考查了余弦定理得應(yīng)用,三角形的面積計(jì)算,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{3}f({\frac{π}{4}})>\sqrt{2}f({\frac{π}{3}})$ | B. | $f(1)>2f(\frac{π}{6})sin1$ | C. | $\sqrt{2}f({\frac{π}{6}})<f({\frac{π}{4}})$ | D. | $\sqrt{3}f({\frac{π}{6}})<f({\frac{π}{3}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com