9.直線(xiàn)y=2x-3與x軸交點(diǎn)坐標(biāo)為($\frac{3}{2}$,0);與y軸交點(diǎn)坐標(biāo)為(0,-3);在其定義域上是單調(diào)增函數(shù).

分析 令y=0,求出x的值得直線(xiàn)與x軸交點(diǎn)坐標(biāo),令x=0求出y的值得直線(xiàn)與y軸交點(diǎn)坐標(biāo);
根據(jù)一次函數(shù)的圖象得出函數(shù)其定義域上的單調(diào)性.

解答 解:直線(xiàn)y=2x-3與x軸交點(diǎn)坐標(biāo)為($\frac{3}{2}$,0);
與y軸交點(diǎn)坐標(biāo)為(0,-3);
在定義域R上是單調(diào)增函數(shù).
故答案為:($\frac{3}{2}$,0),(0,-3),增.

點(diǎn)評(píng) 本題考查了直線(xiàn)的方程與坐標(biāo)軸交點(diǎn)的問(wèn)題,也考查了一次函數(shù)的圖象與性質(zhì)的應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.寫(xiě)出命題“存在一個(gè)常數(shù)M,對(duì)任意的x,都有|f(x)|≤M”的否定是存在一個(gè)常數(shù)M,存在實(shí)數(shù)x,使得|f(x)|>M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.如圖所示,在正方體ABCD-A1B1C1D1中,下列結(jié)論中正確的個(gè)數(shù)是( 。
①當(dāng)點(diǎn)P在BC1(不含端點(diǎn))上運(yùn)動(dòng)時(shí),平面AD1C∥平面A1BP;
②當(dāng)點(diǎn)P在BC1(不含端點(diǎn))上運(yùn)動(dòng)時(shí),A1D⊥AP;
③B1D⊥平面ACD1;
④若M是平面A1B1C1D1上點(diǎn)D到C1距離相等的點(diǎn),則點(diǎn)M的軌跡是直線(xiàn)A1D.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.設(shè)函數(shù)f(x)=-x3+2ex2-mx+lnx,若方程f(x)=x有解,則實(shí)數(shù)m的最大值是e2+$\frac{1}{e}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.有一面足夠長(zhǎng)的墻,現(xiàn)用一36米長(zhǎng)的籬笆圍成如圖所示的四個(gè)面積相等的豬圈,那么豬圈的最大總面積為$\frac{324}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.是否存在實(shí)數(shù)a,使得函數(shù)=-$\frac{1}{2}$cos2x+acosx+$\frac{5}{8}$a-1在閉區(qū)間[0,$\frac{π}{2}$]上的最大值是1?若存在,求出對(duì)應(yīng)的a值;若不存在,試說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.若函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-2x,x≤2}\\{lo{g}_{a}x-\frac{1}{2},x>2}\end{array}\right.$的值域?yàn)閷?shí)數(shù)集R,則f(2$\sqrt{2}$)的取值范圍是[-$\frac{5}{4}$,-$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.如果對(duì)數(shù)函數(shù)y=logax的圖象經(jīng)過(guò)點(diǎn)P($\frac{1}{8}$,3),則底a=( 。
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知點(diǎn)A(3,4)在橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上,則當(dāng)橢圓的中心到直線(xiàn)x=$\frac{{a}^{2}}{\sqrt{{a}^{2}-^{2}}}$的距離最小時(shí),橢圓的離心率為$\frac{\sqrt{5}}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案