5.已知正方形ABCD的邊長為2,則$\overrightarrow{AB}•\overrightarrow{AC}$=4.

分析 由向量加法的平行四邊形法則,以及向量的數(shù)量積的性質(zhì):向量的平方即為模的平方,向量垂直的條件:數(shù)量積為0,計算即可得到所求值.

解答 解:在正方形ABCD中,$\overrightarrow{AC}$=$\overrightarrow{AB}$+$\overrightarrow{AD}$,
即有$\overrightarrow{AB}•\overrightarrow{AC}$=$\overrightarrow{AB}$•($\overrightarrow{AB}$+$\overrightarrow{AD}$)=$\overrightarrow{AB}$2+$\overrightarrow{AB}$•$\overrightarrow{AD}$
=4+0=4.
故答案為:4.

點評 本題考查向量的平行四邊形法則和向量的數(shù)量積的性質(zhì),考查運算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

15.若$\overrightarrow{m}$=(1,$\sqrt{3}$),$\overrightarrow{n}$=(sin(ωx+φ),cos(ωx+φ))(ω>0,0<|φ|<$\frac{π}{2}$),f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,已知點P(x1,y1),Q(x3,y2)是函數(shù)f(x)圖象上的任意兩點,若|y1-y2|=4時,|x1-x2|最小值為$\frac{π}{2}$,且函數(shù)f(x)為奇函數(shù).
(I)求f($\frac{π}{6}$)的值;
(Ⅱ)將函數(shù)y=f(x)的圖象向右平移$\frac{π}{6}$個單位后,得到函數(shù)y=g(x)的圖象,求函數(shù)g(x)單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.設實數(shù)m≠0,直線x=-6m與x+2y=0交于點P,角α的終邊經(jīng)過點P,求出$\frac{2sin2α+cos2α+1}{2cosα}$+$\frac{8tanα}{5}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.求值:sin26°+cos236°+sin6°cos36°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知$\frac{1}{tanα-1}$=1,求$\frac{1}{1+sinαcosα}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.直線l:(2a-1)x-(a+3)y-(a-11)=0(a∈R)交x軸正半軸于點A,y軸正半軸于點B,當三角形AOB(O為坐標原點)面積最小時a的值為-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.若${C_{20}}^{2x-7}={C_{20}}^x$,則正整數(shù)x=7或9.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.定積分(${∫}_{\frac{-π}{3}}^{\frac{π}{3}}$(2x+sinx)dx等于(  )
A.0B.$\frac{π^2}{9}-\frac{1}{2}$C.$\frac{{2{π^2}}}{9}-1$D.$\frac{{2{π^2}}}{9}+1$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知數(shù)列{an}的前n項和Sn=2n-1,那么a4的值為(  )
A.1B.2C.4D.8

查看答案和解析>>

同步練習冊答案