13.如圖,一個簡單組合體的正視圖和側(cè)視圖都是由一個正方形與一個正三角形構(gòu)成的相同的圖形,俯視圖是一個半徑為$\sqrt{3}$的圓(包括圓心).則該組合體的表面積(各個面的面積的和)等于21π.

分析 根據(jù)三視圖復(fù)原的幾何體是圓柱與圓錐的組合體,結(jié)合圖中數(shù)據(jù),求出它的表面積.

解答 解:根據(jù)幾何體的三視圖,得;
該幾何體是下部為圓柱,上部為圓錐的組合體,
且圓柱與圓錐的底面圓半徑都是$\sqrt{3}$,
它們的高分別是2$\sqrt{3}$和2$\sqrt{3}$×$\frac{\sqrt{3}}{2}$=3;
所以該幾何體的表面積為:
S=π•2•$\sqrt{3}$•2$\sqrt{3}$+π•${(\sqrt{3})}^{2}$+π•$\sqrt{3}$•2$\sqrt{3}$=12π+3π+6π=21π.
故答案為:21π.

點評 本題考查了利用三視圖求幾何體表面積的應(yīng)用問題,準確判斷幾何體的形狀是解題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

3.F1、F2是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦點,P是橢圓上一點,且△PF1F2是等腰直角三角形,則橢圓的離心率是$\frac{\sqrt{2}}{2}$或$\sqrt{2}$-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知-9,a1,a2,-1成等差數(shù)列,-9,b1,b2,b3,-1成等比數(shù)列,則b2(a1+a2)等于( 。
A.30B.-30C.±30D.15

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.運行下面的程序,如果輸入的n是6,那么輸出的p是720   

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.設(shè)函數(shù)f(x)的定義域為D,如果存在正實數(shù)k,使對任意x∈D,都有x+k∈D,且f(x+k)>f(x)恒成立,則稱函數(shù)f(x)為D上的“k型增函數(shù)”.已知f(x)是定義在R上的奇函數(shù),且當x>0時,f(x)=|x-a|-2a,若f(x)為R上的“2 015型增函數(shù)”,則實數(shù)a的取值范圍是(  )
A.(-∞,$\frac{2015}{4}$)B.($\frac{2015}{4}$,+∞)C.(-∞,$\frac{2015}{6}$)D.($\frac{2015}{6}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.某研究機構(gòu)對高二學生的記憶力x和判斷力y進行統(tǒng)計分析,得下表數(shù)據(jù)
x681012
y3467
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(2)試根據(jù)(1)求出的線性回歸方程,預(yù)測記憶力為9的同學的判斷力.
($\widehat=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}=\overline{y}-\widehat\overline{x}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.如果關(guān)于x的不等式|x-2|+|x+3|≥a的解集為R,求參數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知幾何體的三視圖(如圖),則該幾何體的表面積為( 。
A.$4\sqrt{2}$B.$4\sqrt{3}$C.4$\sqrt{2}$+4D.4$\sqrt{3}$+4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知焦點在y軸上的雙曲線$\frac{{x}^{2}}{m}$+y2=1,其準線方程為y=±$\frac{\sqrt{5}}{5}$,則實數(shù)m的值是( 。
A.-4B.-$\frac{1}{4}$C.-4或-$\frac{1}{4}$D.-$\frac{1}{2}$

查看答案和解析>>

同步練習冊答案