15.已知極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與x軸的正半軸重合,圓C的極坐標(biāo)方程是ρ=asinθ,直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=-\frac{3}{5}t+2}\\{y=\frac{4}{5}t}\end{array}\right.$(t為參數(shù))
(1)若a=2,直線l與x軸的交點(diǎn)是M,N是圓C上一動(dòng)點(diǎn),求|MN|的最大值;
(2)直線l被圓C截得的弦長(zhǎng)等于圓C的半徑的$\sqrt{3}$倍,求a的值.

分析 (1)求出圓C的圓心和半徑,M點(diǎn)坐標(biāo),則|MN|的最大值為|MC|+r;
(2)由垂徑定理可知圓心到直線l的距離為半徑的$\frac{1}{2}$,列出方程解出.

解答 解:(1)當(dāng)a=2時(shí),圓C的直角坐標(biāo)方程為x2+y2=2y,即x2+(y-1)2=1.∴圓C的圓心坐標(biāo)為C(0,1),半徑r=1.
令y=$\frac{4}{5}t$=0得t=0,把t=0代入x=-$\frac{3}{5}t+2$得x=2.∴M(2,0).
∴|MC|=$\sqrt{{2}^{2}+{1}^{2}}$=$\sqrt{5}$.∴|MN|的最大值為|MC|+r=$\sqrt{5}+1$.
(2)由ρ=asinθ得ρ2=aρsinθ,∴圓C的直角坐標(biāo)方程是x2+y2=ay,即x2+(y-$\frac{a}{2}$)2=$\frac{{a}^{2}}{4}$.
∴圓C的圓心為C(0,$\frac{a}{2}$),半徑為|$\frac{a}{2}$|,
直線l的普通方程為4x+3y-8=0.
∵直線l被圓C截得的弦長(zhǎng)等于圓C的半徑的$\sqrt{3}$倍,
∴圓心C到直線l的距離為圓C半徑的一半.
∴$\frac{|\frac{3a}{2}-8|}{\sqrt{{4}^{2}+{3}^{2}}}$=|$\frac{a}{4}$|,解得a=32或a=$\frac{32}{11}$.

點(diǎn)評(píng) 本題考查了極坐標(biāo)方程,參數(shù)方程化為普通方程,距離公式的應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=x-$\frac{1}{x}$-alnx.
(1)若f′(2+$\sqrt{3}$)=0,求函數(shù)f(x)的極大值點(diǎn);
(2)若當(dāng)x≥1時(shí),f(x)≥0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}滿足a1=$\frac{1}{2}$,且anan+1+an+1-2an=0(n∈N).
(1)求a2,a3,a4的值;
(2)猜想數(shù)列{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知P為拋物線y2=4x上一個(gè)動(dòng)點(diǎn),Q為圓x2+(y-4)2=1上一個(gè)動(dòng)點(diǎn),那么點(diǎn)P到點(diǎn)Q的距離與點(diǎn)P到y(tǒng)軸距離之和最小值是$\sqrt{17}$-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.以下命題:
①若x≠1或y≠2,則x+y≠3;
②若空間向量$\overrightarrow{OA}$,$\overrightarrow{OB}$與空間中任一向量都不能組成空間的一組基底,則$\overrightarrow{OA}$與$\overrightarrow{OB}$共線;
③命題“?x∈R,使得x2+x+1<0”的否定是:“?x∈R,均有x2+x+1<0”;
④若A、B為兩個(gè)定點(diǎn),K為正常數(shù),若|PA|+|PB|=K,則動(dòng)點(diǎn)P的軌跡是橢圓;
⑤已知拋物線y2=2px,以過焦點(diǎn)的一條弦AB為直徑作圓,則此圓與準(zhǔn)線相切.
其中真命題有( 。﹤(gè).
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知直線y=kx+1,當(dāng)k變化時(shí),此直線被橢圓$\frac{{x}^{2}}{4}$+y2=1截得的最大弦長(zhǎng)是( 。
A.4B.$\frac{4\sqrt{3}}{3}$C.$\sqrt{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=ex-ax
(1)若函數(shù)f(x)在x=1處取得極值,求函數(shù)y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(2)當(dāng)x≥0,f(x)-f(-x)≥0恒成立,求a的最大值;
(3)當(dāng)a=1,解關(guān)于x的不等式:$\left\{\begin{array}{l}{f(x)≤f(1)}\\{f(-x)≤f(1)}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$e=\frac{{\sqrt{2}}}{2}$,焦距為2.
(1)求橢圓C的方程;
(2)拋物線y2=2px(p>0)的焦點(diǎn)和橢圓的右焦點(diǎn)重合,過右焦點(diǎn)作斜率為1的直線交橢圓于A,B,交拋物線于C,D,求△OAB和△OCD面積之比(O為坐標(biāo)原點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知變量x,y滿足線性約束條件$\left\{\begin{array}{l}{4x+3y-25≤0}\\{x-4y+8≤0}\\{x-1≥0}\end{array}\right.$,若線性目標(biāo)函數(shù)z=ax-y(a>1)的最大值為5,則實(shí)數(shù)a的值為2.

查看答案和解析>>

同步練習(xí)冊(cè)答案