6.已知l,m是兩條不同的直線,α,β是兩個不同的平面,下列命題為真命題的序號是( 。
①若l?α,m?α,l∥β,m∥β,則α∥β;
②若l?α,l∥β,α∩β=m,則l∥m;
③若l∥α,α∥β,則l∥β;
④若l⊥α,l∥m,α∥β,則m⊥β.
A.①④B.①③C.②④D.②③

分析 ①由已知可得:α∥β或相交,即可判斷出正誤;
②利用線面平行的性質(zhì)定理即可判斷出正誤;
③利用線面面面平行的性質(zhì)定理即可判斷出正誤;
④利用面面線面的平行與垂直的性質(zhì)定理即可判斷出.

解答 解:①若l?α,m?α,l∥β,m∥β,則α∥β或相交,因此不正確;
②若l?α,l∥β,α∩β=m,∴m?β,l?β,m?α,m?α,∴l(xiāng)∥m,因此正確;
③若l∥α,α∥β,則l∥β或l?β,因此不正確;
④若l⊥α,α∥β,∴l(xiāng)⊥β,又l∥m,∴m⊥β,則m⊥β,正確.
故選:C.

點評 本題考查了線面面面平行與垂直的判定與性質(zhì)定理、簡易邏輯的判定方法,考查了推理能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在數(shù)列{an}中,a2=2,a5=8,若{an}是等比數(shù)列,則公比q=$\root{3}{4}$;若{an}是等差數(shù)列,則數(shù)列{an}的前n項和Sn=n2-n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若變量x,y滿足約束條件$\left\{\begin{array}{l}{x-y-2≤0}\\{x+y-m≤0}\\{x≥1}\end{array}\right.$,目標(biāo)函數(shù)z=2x+y的最大值為7,則目標(biāo)函數(shù)取最小值時的最優(yōu)解為(1,-1),實數(shù)m的值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)y=2x+$\frac{2}{x}$(x<0)的最大值為-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知圓錐曲線mx2+y2=1的離心率為$\sqrt{2}$,則實數(shù)m的值為( 。
A.-1B.-2C.-3D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)1+x5=a0+a1(x-1)+a2(x-1)2+…+a5(x-1)5,則a1+a2+…+a5=31.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若經(jīng)過點P(-3,0)的直線l與圓M:x2+y2+4x-2y+3=0相切,則圓M的圓心坐標(biāo)是(-2,1);半徑為$\sqrt{2}$;切線在y軸上的截距是-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在△ABC中,∠ABC=30°,AB=$\sqrt{3}$,BC邊上的中線AD=1,則AC的長度為( 。
A.1或$\sqrt{7}$B.$\sqrt{7}$C.$\sqrt{3}$D.1或$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知an+1=$\frac{2{a}_{n}-1}{{a}_{n}+4}$,a1=1,求{an}通項公式.

查看答案和解析>>

同步練習(xí)冊答案