5.已知等差數(shù)列{an}的各項(xiàng)互不相等,前兩項(xiàng)的和為10,設(shè)向量$\overrightarrow{m}$=(a1,a3),$\overrightarrow{n}$=(a3,a7),且$\overrightarrow{m}∥\overrightarrow{n}$;
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=$\frac{{a}_{n}}{2×{4}^{n}}$,其前n項(xiàng)和為Tn,求證:Tn<$\frac{7}{9}$.

分析 (1)設(shè)等差數(shù)列{an}的公差為d≠0,a1+a2=10,由于$\overrightarrow{m}∥\overrightarrow{n}$,可得${a}_{3}^{2}$-a1a7=0,再利用等差數(shù)列的通項(xiàng)公式即可得出;
(2)利用“錯位相減法”、等比數(shù)列的前n項(xiàng)和公式即可得出.

解答 (1)解:設(shè)等差數(shù)列{an}的公差為d≠0,a1+a2=10,
∵$\overrightarrow{m}∥\overrightarrow{n}$,∴${a}_{3}^{2}$-a1a7=0,
聯(lián)立$\left\{\begin{array}{l}{2{a}_{1}+d=10}\\{({a}_{1}+2d)^{2}={a}_{1}({a}_{1}+6d)}\end{array}\right.$,解得$\left\{\begin{array}{l}{{a}_{1}=4}\\{d=2}\end{array}\right.$,
∴an=4+2(n-1)=2n+2.
(2)證明:bn=$\frac{{a}_{n}}{2×{4}^{n}}$=$\frac{n+1}{{4}^{n}}$,
其前n項(xiàng)和為Tn=$\frac{2}{4}+\frac{3}{{4}^{2}}$+…+$\frac{n+1}{{4}^{n}}$,
$\frac{1}{4}{T}_{n}=\frac{2}{{4}^{2}}+\frac{3}{{4}^{3}}$+…+$\frac{n}{{4}^{n}}$+$\frac{n+1}{{4}^{n+1}}$,
∴$\frac{3}{4}{T}_{n}$=$\frac{2}{4}+\frac{1}{{4}^{2}}+\frac{1}{{4}^{3}}$+…+$\frac{1}{{4}^{n}}$-$\frac{n+1}{{4}^{n+1}}$=$\frac{1}{4}+\frac{\frac{1}{4}(1-\frac{1}{{4}^{n}})}{1-\frac{1}{4}}$-$\frac{n+1}{{4}^{n+1}}$=$\frac{7}{12}-\frac{3n+7}{3×{4}^{n+1}}$,
∴Tn=$\frac{7}{9}$-$\frac{3n+7}{9×{4}^{n}}$<$\frac{7}{9}$.

點(diǎn)評 本題考查了等差數(shù)列的通項(xiàng)公式、“錯位相減法”、等比數(shù)列的前n項(xiàng)和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知直線l:x-y+c=0(c∈R),⊙M:(x-2)2+(y-2)2=1,直線l把⊙M分成兩段圓弧,弧長之比為λ,其中$\frac{1}{2}$<λ<1,則c={c|-$\frac{\sqrt{2}}{2}$<c<$\frac{\sqrt{2}}{2}$,且 c≠0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知f(x)=$\left\{\begin{array}{l}{{2}^{x-2}(x≤2)}\\{lo{g}_{2}(x-1)(x>2)}\end{array}\right.$則f(f(3))=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.滿足sin2x=$\frac{1}{2}$的x的集合是{x|x=kπ±$\frac{π}{4}$,k∈z}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列函數(shù)中,既是奇函數(shù)又在其定義域上是增函數(shù)的是(  )
A.y=-$\frac{2}{x}$B.y=2xC.y=log2xD.y=2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在△ABC中,若|AB|=1,|AC|=$\sqrt{3}$,|$\overrightarrow{AB}$+$\overrightarrow{AC}$|=|$\overrightarrow{BC}$|,則其形狀為③,$\frac{{\overrightarrow{BA}•\overrightarrow{BC}}}{{|{\overrightarrow{BC}}|}}$=$\frac{1}{2}$(①銳角三角形 ②鈍角三角形  ③直角三角形,在橫線上填上序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知x∈R,2x|2x-a|-6=0有解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若關(guān)于x的不等式(x-2a+1)(x-1)≤0的解集中有且只有三個整數(shù),則實(shí)數(shù)a的取值范圍是(-$\frac{1}{2}$,0]∪[2,$\frac{5}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知z是復(fù)數(shù),i是虛數(shù)單位,若zi=1+i,則z=( 。
A.1+iB.1-iC.-1+iD.-1-i

查看答案和解析>>

同步練習(xí)冊答案