分析 (1)利用公理3證明ME為平面AA1C1C與平面PMN的交線,進一步證明F在兩面的交線上得M,E,F(xiàn)三點共線.
(2)利用等積法把三棱錐D-MNP的體積轉(zhuǎn)化為三棱錐N-DMP的條件求解.
解答 證明:(1)∵A1C1∩PN=E,
∴E∈A1C1,E∈PN,則E∈平面AA1C1C,E∈平面MPN
又∵M∈CC1,
∴M∈平面AA1C1C,
又M∈平面PMN,
∴平面AA1C1C∩平面PMN=ME,
∵AC1∩平面MPN=F,
∴F∈平面PMN,F(xiàn)∈平面AA1C1C,
∴點F在直線ME上,則M,E,F(xiàn)三點共線.
解:(2)${V}_{D-MNP}={V}_{N-MDP}=\frac{1}{3}{S}_{△MDP}•N{C}_{1}$,
又${S}_{△MDP}=2×2-\frac{1}{2}×2×1-\frac{1}{2}×1×1-\frac{1}{2}×2×1=\frac{3}{2}$,
∴${V}_{D-MNP}=\frac{1}{3}×\frac{3}{2}×1=\frac{1}{2}$.
點評 本題考查平面的基本性質(zhì)即推論,考查了利用等積法求三棱錐的體積,是中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 12 | B. | 14 | C. | 10 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
月 份 | 1 | 2 | 3 | 4 | 5 | 6 |
產(chǎn)量x千件 | 2 | 3 | 4 | 3 | 4 | 5 |
單位成本y元/件 | 73 | 72 | 71 | 73 | 69 | 68 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ①②③ | B. | ②③④ | C. | ②③ | D. | ①③ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com