11.?dāng)?shù)列{an}滿足a1+2a2+…+nan=4-$\frac{n+2}{{2}^{n-1}}$,n∈N*
(Ⅰ)求a3的值;
(Ⅱ)求數(shù)列{an}前n項和Tn
(Ⅲ)設(shè)bn=log2a1+log2a2+…+log2an,${c_n}=\frac{1}{{{b_{n+1}}}}$,求數(shù)列{cn}的前n項和.

分析 (Ⅰ)可令n=1,2,3,計算即可得到所求值;
(Ⅱ)當(dāng)n≥2時,將n換為n-1,相減,即可得到所求通項公式和前n項和;
(Ⅲ)運用對數(shù)的運算性質(zhì),以及等差數(shù)列的求和公式,化簡可得bn=-$\frac{n(n-1)}{2}$,故cn=-2($\frac{1}{n}$-$\frac{1}{n+1}$),再由裂項相消求和即可得到所求和.

解答 解:(Ⅰ)令n=1,得a1=1,
令n=2,有a1+2a2=2,得${a_2}=\frac{1}{2}$,
令n=3,有${a_1}+2{a_2}+3{a_3}=4-\frac{5}{4}$,得${a_3}=\frac{1}{4}$
(Ⅱ)當(dāng)n≥2時,${a_1}+2{a_2}+3{a_3}+…+(n-1){a_{n-1}}=4-\frac{n+1}{{{2^{n-2}}}}$,①${a_1}+2{a_2}+3{a_3}+…+(n-1){a_{n-1}}+n{a_n}=4-\frac{n+2}{{{2^{n-1}}}}$,②
②-①,得$n{a_n}=\frac{n+1}{{{2^{n-2}}}}-\frac{n+2}{{{2^{n-1}}}}=\frac{n}{{{2^{n-1}}}}$,
所以${a_n}=\frac{1}{{{2^{n-1}}}}$,
又當(dāng)n=1時,a1=1也適合${a_n}=\frac{1}{{{2^{n-1}}}}$,
所以,${a_n}=\frac{1}{{{2^{n-1}}}}$(n∈N*),
前n項和Tn=$\frac{1-\frac{1}{{2}^{n}}}{1-\frac{1}{2}}$=2(1-$\frac{1}{{2}^{n}}$);
(Ⅲ)bn=log2a1+log2a2+…+log2an=-1-2-…-(n-1)=$-\frac{n(n-1)}{2}$,
故${c_n}=\frac{1}{{{b_{n+1}}}}=-\frac{2}{n(n+1)}=-2(\frac{1}{n}-\frac{1}{n+1})$,則${c_1}+{c_2}+…+{c_n}=-2((1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})+…+(\frac{1}{n}-\frac{1}{n+1}))=-\frac{2n}{n+1}$,
所以數(shù)列$\{\frac{1}{b_n}\}$的前n項和為$-\frac{2n}{n+1}$.

點評 本題考查數(shù)列的通項和求和的求法,注意運用相減法,以及裂項相消求和法,考查化簡整理的運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.化簡tan20°+4sin20°的結(jié)果為( 。
A.1B.$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.隨著機動車數(shù)量的迅速增加,停車難已是很多小區(qū)共同面臨的問題.某小區(qū)甲、乙兩車共用一停車位,并且都要在該泊位?8小時,假定它們在一晝夜的時間段中隨機到達(dá),試求兩車中有一車在停泊位時,另一車必須等待的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知p:M={(x,y)|tx-y≤3},且(2,1)∈M,(1,-4)∉M,q:集合A={x|-2≤x≤5},B={x|t+1≤x≤2t-1},且B⊆A,若p或q為真,p且q為假,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.若集合A⊆M={1,2,3,4,5,6,7},且滿足“若2k∈A,則2k-1∈A且2k+1∈A,k∈N”,則A中有多少個包含兩個偶數(shù)的子集?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知等差數(shù)列{an}為遞增數(shù)列,且a1=1,{bn}為等比數(shù)列,且a2=b2,a5=b3,a14=b4
(1)求{an},{bn}的通項公式;
(2)已知數(shù)列{cn}滿足:an+1=$\frac{{c}_{1}}{_{1}}$+$\frac{{c}_{2}}{_{2}}$+…+$\frac{{c}_{n}}{_{n}}$,求數(shù)列{an•cn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)$y=\sqrt{1-log_2^{\;}x}$的定義域為( 。
A.(0,+∞)B.(0,2]C.[1,2]D.(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)等差數(shù)列$5,4\frac{2}{7},3\frac{4}{7},…$的前n和為Sn,若使得Sn最大,則n等于( 。
A.7B.8C.6或7D.7或8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)關(guān)于x的方程2x2-ax-2=0的兩根為α、β(α<β),函數(shù)f(x)=$\frac{4x-a}{{x}^{2}+1}$
(1)求f(α)•f(β)的值;
(2)討論函數(shù)f(x)在區(qū)間[α,β]上的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊答案