13.已知f($\frac{1}{x}$+1)=$\frac{1}{{x}^{2}}$-1,則f(x)的解析式為(  )
A.f(x)=x(x-2)B.f(x)=x(x-2)(x≠0)C.f(x)=x(x-2)(x≠1)D.f(x)=x(x-2)(x≠0且x≠1)

分析 用換元法,設(shè)$\frac{1}{x}$+1=t(t≠1),求出f(t)即可.

解答 解:設(shè)$\frac{1}{x}$+1=t,(t≠1),∴x=$\frac{1}{t-1}$;
∴f($\frac{1}{x}$+1)=$\frac{1}{{x}^{2}}$-1可化為
f(t)=$\frac{1}{{(\frac{1}{t-1})}^{2}}$-1=t2-2t=t(t-2),t≠1;
∴f(x)=x(x-2),(x≠1).
故選:C.

點評 本題考查了用換元法求函數(shù)解析式的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知拋物線y=ax2的準(zhǔn)線方程為y=-1,則實數(shù)a=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.為了考察某種中藥預(yù)防流感效果,抽樣調(diào)查40人,得到如下數(shù)據(jù):服用中藥的有20人,其中患流感的有2人,而未服用中藥的20人中,患流感的有8人.
(Ⅰ)根據(jù)以上數(shù)據(jù)建立2×2列聯(lián)表;
(Ⅱ)能否在犯錯誤不超過0.05的前提下認(rèn)為該藥物有效?
參考
P(K2≥k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$ (n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.$\frac{1}{1×2}+\frac{1}{2×3}+\frac{1}{3×4}+…+\frac{1}{2014×2015}$=$\frac{2014}{2015}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若不等式組$\left\{\begin{array}{l}x+y-2≤0\\ x+2y-2≥0\\ x-y+2m≥0\end{array}\right.$表示的平面區(qū)域為三角形,且其面積等于3,則m的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)命題甲:關(guān)于x的不等式x2+2ax+4≥0對一切x∈R恒成立,命題乙:設(shè)函數(shù)f(x)=loga(x-a+2)在區(qū)間(1,+∞)上恒為正值,那么甲是乙的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.132=340(6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),且滿足f(x)=3x2+2xf′(2),則f′(4)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{\sqrt{3-ax}}{a-1}$(a≠1且a≠0)
①當(dāng)a>1時,判斷函數(shù)f(x)的單調(diào)性,并用定義法證明.
②若函數(shù)函數(shù)f(x)在區(qū)間(0,1]上是減函數(shù),試求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案