6.若函數(shù)f(x)=loga(2x2+x)(a>0且a≠1)在區(qū)間(0,$\frac{1}{2}$)內(nèi)恒有f(x)>0,則f(x)的單調(diào)遞增區(qū)間為(  )
A.(-∞,$\frac{1}{4}$)B.(-$\frac{1}{4}$,+∞)C.(0,+∞)D.(-∞,-$\frac{1}{2}$)

分析 先求出2x2+x,(0,$\frac{1}{2}$)的范圍,再由條件f(x)>0判斷出a的范圍,再根據(jù)復(fù)合函數(shù)“同增異減”原則求f(x)單調(diào)區(qū)間.

解答 解:當(dāng)x∈(0,$\frac{1}{2}$)時,2x2+x∈(0,1),
∴0<a<1,
∵函數(shù)f(x)=loga(2x2+x)(a>0,a≠1)由f(x)=logat和t=2x2+x復(fù)合而成,
0<a<1時,f(x)=logat在(0,+∞)上是減函數(shù),所以只要求t=2x2+x>0的單調(diào)遞減區(qū)間.
t=2x2+x>0的單調(diào)遞減區(qū)間為(-∞,-$\frac{1}{2}$),
∴f(x)的單調(diào)增區(qū)間為(-∞,-$\frac{1}{2}$),
故選:D.

點評 本題考查復(fù)合函數(shù)的單調(diào)區(qū)間問題,復(fù)合函數(shù)的單調(diào)區(qū)間復(fù)合“同增異減”原則,在解題中勿忘真數(shù)大于0條件.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)函數(shù)y=f(x)是定義在(-∞,+∞)上的偶函數(shù),且當(dāng)x>0時,f(x)是單調(diào)函數(shù),則滿足f(x)=f($\frac{x+3}{x+4}$)的所有x之各為-8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在極坐標(biāo)系中,曲線C的極坐標(biāo)方程為ρ=2cosθ+2sinθ,以極點為坐標(biāo)原點,極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+t}\\{y=\sqrt{3}t}\end{array}\right.$(t為參數(shù)),求直線l被曲線C所截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.圖中(1)(2)(3)(4)四個圖象各表示兩個變量x,y的對應(yīng)關(guān)系,其中表示y是x的函數(shù)關(guān)系的有②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)關(guān)于x的一元二次方程x2+2ax+b2=0.
(1)寫出關(guān)于x的一元二次方程x2+2ax+b2=0有解的充要條件;
(2)若a是從0、1、2、3四個數(shù)中任取的一個數(shù),b是從0、1、2三個數(shù)中任取的一個數(shù),求上述方程有實根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某單位工作時間(單位:h)的抽樣頻數(shù)分布如下:
[6,6.5),5人;[6.5,7),17人;[7,7.5),33人;[7.5,8),37人;[8,8.5),6人;[8.5,9),2人.
試估計該單位的平均工作時間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.二次函數(shù)y=2x2-2的圖象為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若冪函數(shù)y=f(x)的圖象過點$({2,\frac{1}{4}})$,若實數(shù)m滿足$f(m)=\frac{1}{2}$,則實數(shù)m的值為$±\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=a-$\frac{1}{{{2^x}+1}}$,
(1)若a=1,求f(0)的值;
(2)探究f(x)的單調(diào)性,并證明你的結(jié)論;
(3)若函數(shù)f(x)為奇函數(shù),判斷|f(ax)|與f(2)的大。

查看答案和解析>>

同步練習(xí)冊答案