8.從3個(gè)英語(yǔ)教師和5個(gè)語(yǔ)文教師中選取4名教師參加外事活動(dòng),其中至少要有一名英語(yǔ)教師,則不同的選法共有( 。
A.$A_3^1A_5^3+A_3^2A_5^2+A_3^3A_5^1$
B.$C_3^1C_5^3+C_3^2C_5^2+C_3^3C_5^1$
C.$C_3^1C_7^3$
D.$({C_3^1C_5^3+C_3^2C_5^2+C_3^3C_5^1})A_4^4$

分析 至少要有一名英語(yǔ)教師,分含1名,2名,3名英語(yǔ)老師三類,根據(jù)分類計(jì)數(shù)原理可得.

解答 解:至少要有一名英語(yǔ)教師,分含1名,2名,3名英語(yǔ)老師三類,故有$C_3^1C_5^3+C_3^2C_5^2+C_3^3C_5^1$,
故選:B.

點(diǎn)評(píng) 本題考查了分類計(jì)數(shù)原理,關(guān)鍵是分類,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.一個(gè)盒子中裝有2個(gè)紅球和2個(gè)白球,這4個(gè)球除顏色外完全相同.
(1)無(wú)放回的從中任取2次,每次取1個(gè),取出的2個(gè)都是紅球的概率;
(2)有放回的從中任取2次,每次取1個(gè),取出的2個(gè)都是紅球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.若x,y滿足不等式組$\left\{\begin{array}{l}x+2y-2≥0\\ x-y+1≥0\\ 2x+y-4≤0\end{array}\right.$,z=x-2y,則z的最大值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知 a,b是兩條不同的直線,α,β是兩個(gè)不同的平面,則下列說(shuō)法正確的是( 。
A.若a∥α,b∥α,則a∥bB.若α⊥β,a?α,b?β,則a⊥b
C.若a⊥b,b⊥α,則a∥αD.若α∥β,a?α,則a∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖為一簡(jiǎn)單組合體,其底面ABCD為正方形,棱PD與EC均垂直于底面ABCD,PD=2EC,N為PB的中點(diǎn),求證:
(1)平面EBC∥平面PDA;
(2)NE⊥平面PDB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.若正方體外接球的體積是$\frac{9}{2}$π,則正方體的棱長(zhǎng)等于$\sqrt{3}$;該正方體內(nèi)切球的表面積為3π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.在極坐標(biāo)中,直線l的方程為ρ(3cosθ-4sinθ)=2,曲線C的方程為ρ=m(m>0). 
(1)求直線l與極軸的交點(diǎn)到極點(diǎn)的距離;
(2)若曲線C上恰好存在兩個(gè)點(diǎn)到直線l的距離為$\frac{1}{5}$,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)某幾何體的三視圖如圖(長(zhǎng)度單位為cm),則該幾何體的最長(zhǎng)的棱為( 。ヽm
A.4cmB.$\sqrt{13}$cmC.$\sqrt{14}$cmD.$\sqrt{15}$cm

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.橢圓3x2+4y2=12的弦AB不過(guò)原點(diǎn),P(2,1),AB被直線OP平分,求△PAB面積的最大值時(shí),直線AB的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案