18.以下敘述正確的有( 。
(1)分段函數(shù)的定義域是各段定義域的并集,值域是各段值域的并集.
(2)分段函數(shù)在定義域的不同部分有不同的對(duì)應(yīng)法則,但它是一個(gè)函數(shù).
(3)若D1、D2分別是分段函數(shù)的兩個(gè)不同對(duì)應(yīng)法則的值域,則D1∩D2≠∅也能成立.
A.1個(gè)B.2個(gè)C.3個(gè)D.0個(gè)

分析 根據(jù)函數(shù)的定義結(jié)合分段函數(shù)的性質(zhì)進(jìn)行判斷即可.

解答 解:(1)分段函數(shù)的定義域是各段定義域的并集,值域是各段值域的并集.正確
(2)分段函數(shù)在定義域的不同部分有不同的對(duì)應(yīng)法則,但它是一個(gè)函數(shù).正確
(3)若D1、D2分別是分段函數(shù)的兩個(gè)不同對(duì)應(yīng)法則的值域,則D1∩D2≠∅也能成立.正確
故選:C

點(diǎn)評(píng) 本題主要考查分段函數(shù)的定義以及性質(zhì)的應(yīng)用,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知二次函數(shù)f(x)滿(mǎn)足f(0)=0,且f(x+1)-f(x)=-2x+1.
(1)求二次函數(shù)f(x)的解析式;
(2)若不等式mf(x)>(m-1)(2x-1)對(duì)m∈[-2,2]恒成立,求實(shí)數(shù)x的取值范圍;
(3)是否存在這樣的正數(shù)a、b,當(dāng)x∈[a,b]時(shí),f(x)的值域?yàn)?[\frac{1},\frac{1}{a}]$,若存在,求出所有的正數(shù)a,b的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.如果用反證法證明“數(shù)列{an}的各項(xiàng)均小于2”,有下列四種不同的假設(shè):
①數(shù)列{an}的各項(xiàng)均大于2;          ②數(shù)列{an}的各項(xiàng)均大于或等于2;
③數(shù)列{an}中存在一項(xiàng)ak,ak≥2;   ④數(shù)列{an}中存在一項(xiàng)ak,ak>2.
其中正確的序號(hào)為③.(填寫(xiě)出所有假設(shè)正確的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1與雙曲線(xiàn)x2-$\frac{{y}^{2}}{3}$=1
(1)證明二者焦點(diǎn)相同,并求出焦點(diǎn)坐標(biāo).
(2)已知二者的一個(gè)交點(diǎn)為P,焦點(diǎn)分別為F1,F(xiàn)2,求|PF1|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知f(x)=$\left\{\begin{array}{l}{f(x-3),x>0}\\{2x-{x}^{3},x≤0}\end{array}\right.$,則f[f(5)]=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.函數(shù)y=$\frac{{x}^{2}+2x}{\sqrt{2x+1}}$-(2x-3)0的定義域?yàn)閧x|x>-$\frac{1}{2}$,且x≠$\frac{3}{2}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知△ABC的周長(zhǎng)為18,|AB|=8且A(-4,0),B(4,0),|CA|<|CB|,則C點(diǎn)的軌跡方程為( 。
A.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1(y≠0)B.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1(y≠0,x<0)
C.$\frac{{y}^{2}}{25}$+$\frac{{x}^{2}}{9}$=1(y≠0)D.$\frac{{y}^{2}}{25}$+$\frac{{x}^{2}}{9}$=1(y≠0,x<0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知公比為q(0<q<1)的等比數(shù)列{an}中,a2=2,前三項(xiàng)的和為7.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿(mǎn)足bn=a1•a2•…•an,求使0<bn<1的正整數(shù)n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.記者要為5名志愿者和2名老人拍照,要求排成一排,2位老人相鄰但不排在兩端的概率為( 。
A.$\frac{2}{7}$B.$\frac{4}{21}$C.$\frac{1}{7}$D.$\frac{2}{21}$

查看答案和解析>>

同步練習(xí)冊(cè)答案