13.設(shè)f:x→x2是集合A到B的函數(shù),如果集合B={1},則集合A不可能是(  )
A.{1}B.{-1}C.{1,-1}D.{-1,0,1}

分析 根據(jù)映射的定義,先求出集合A中的像,即可得出結(jié)論.

解答 解:由已知x2=1,解之得,x=±1.
故選:D.

點(diǎn)評 本題考查的知識(shí)點(diǎn)是映射的定義和象集合的運(yùn)算,其中根據(jù)映射的定義求出集合A是解答本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.寫出函數(shù)y=|x-1|的單調(diào)增區(qū)間是[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知m為一條直線,α,β為兩個(gè)不同的平面,則下列說法正確的是( 。
A.若m∥α,α∥β,則m∥βB.若α⊥β,m⊥α,則m⊥βC.若m∥α,α⊥β,則m⊥βD.若m⊥α,α∥β,則m⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列函數(shù)f(x)與g(x)是相同函數(shù)的是(  )
A.$f(x)=\sqrt{{{(x-1)}^2}}$;g(x)=x-1B.$f(x)=\frac{{{x^2}-1}}{x-1}$;g(x)=x+1
C.f(x)=lg(x+1)+lg(x-1);g(x)=lg(x2-1)D.f(x)=ex+1.ex-1;g(x)=e2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)定義域?yàn)閤∈[-1,1]且為奇函數(shù).當(dāng)x∈[-1,0)時(shí),$f(x)=\frac{1}{4^x}-\frac{1}{2^x}$,則f(x)在x∈[-1,1]上的值域?yàn)閇-2,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)U=R,M={x|x≥2},N=x|-1≤x<4},求:
(1)M∩N;             
(2)(∁UN)∪(M∩N).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若命題“?a∈[2,4],使ax2+(a-3)x-3>0”是真命題,則實(shí)數(shù)x的取值范圍是$(-∞,-1)∪(\frac{3}{4},+∞)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)$f(x)=cos({2x-\frac{π}{3}})+{sin^2}x-{cos^2}x+\sqrt{2}$.
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)若存在$t∈[{\frac{π}{12},\frac{π}{3}}]$滿足[f(t)]2-2$\sqrt{2}$f(t)-m>0,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知全集為R,集合A={x|2≤x<4},B={x|3x-7≥8-2x},則A∩B={x|3≤x<4};A∪(∁RB)={x|x<4}.

查看答案和解析>>

同步練習(xí)冊答案