16.已知$\frac{tanα}{3-tanα}$=2,則$\frac{3sinα+2cosα}{sinα-cosα}$=8.

分析 由條件利用同角三角函數(shù)的基本關(guān)系求得tanα的值,可得$\frac{3sinα+2cosα}{sinα-cosα}$=$\frac{3tanα+2}{tanα-1}$ 的值.

解答 解:∵已知$\frac{tanα}{3-tanα}$=2,∴tanα=2,則$\frac{3sinα+2cosα}{sinα-cosα}$=$\frac{3tanα+2}{tanα-1}$=$\frac{6+2}{2-1}$=8,
故答案為:8.

點(diǎn)評(píng) 本題主要考查同角三角函數(shù)的基本關(guān)系的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知定義域?yàn)镽的偶函數(shù)f(x)在區(qū)間[0,+∞)上是單調(diào)減函數(shù),若f(1)<f(lnx),則x的取值范圍是$(\frac{1}{e},e)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知定義在R上的偶函數(shù)f(x)滿足f(1)=1,且對(duì)于任意的x>0,f′(x)<x恒成立,則不等式f(x)<$\frac{1}{2}$x2+$\frac{1}{2}$的解集為( 。
A.(-∞,1)B.(1,+∞)C.(-1,1)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.求值:$\frac{{({1+tan{{22}°}})({1+tan{{23}°}})}}{2}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.某同學(xué)用“五點(diǎn)法”畫(huà)函數(shù)f(x)=Asin(ωx+ϕ)+B,A>0,ω>0,|ϕ|<$\frac{π}{2}$在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如下表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
xx1$\frac{1}{3}$x2$\frac{7}{3}$x3
Asin(ωx+ϕ)+B0$\sqrt{3}$0-$\sqrt{3}$0
(Ⅰ)請(qǐng)求出上表中的x1、x2、x3,并直接寫(xiě)出函數(shù)f(x)的解析式;
(Ⅱ)將f(x)的圖象沿x軸向右平移$\frac{2}{3}$個(gè)單位得到函數(shù)g(x),當(dāng)x∈[0,4]時(shí)其圖象的最高點(diǎn)和最低點(diǎn)分別為P,Q,求$\overrightarrow{OQ}$與$\overrightarrow{QP}$夾角θ的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.函數(shù)y=$\sqrt{-{x}^{2}+x+2}$的單調(diào)遞減區(qū)間是[$\frac{1}{2}$,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)定義域?yàn)镽的函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(x+2),x≥-1}\\{{x}^{2}+4x+4,x<-1}\end{array}\right.$.
(1)在平面直角坐標(biāo)內(nèi)作出函數(shù)f(x)的圖象,并指出f(x)的單調(diào)區(qū)間(不需證明);
(2)若關(guān)于x的方程f(x)-2a=0有兩個(gè)不相等的實(shí)數(shù)根,求a的取值范圍(只需簡(jiǎn)單說(shuō)明,不需嚴(yán)格證明);
(3)設(shè)g(x)為R上的奇函數(shù),且當(dāng)x>0時(shí),g(x)=f(x),求g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)un=1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$,證明數(shù)列{un}的極限存在.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.函數(shù)f(x)=ax+b,(a>0),g(x)=f(x)(x+m),f[f(x)]=16x+5.
(1)求f(x)解析式;
(2)當(dāng)x∈[1,3]時(shí),g(x)有最大值為13,求m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案