A. | $\frac{13}{3}π$ | B. | $\frac{16}{3}π$ | C. | $\frac{42}{3}π$ | D. | $\frac{64}{3}π$ |
分析 由題意推出三棱柱上下底面中心連線的中點,到三棱柱頂點的距離相等,說明中心就是外接球的球心,求出球的半徑,即可求出外接球的表面積.
解答 解:∵正三棱柱ABC-A1B1C1的中,底面邊長為2,高為4,
由題意可得:三棱柱上下底面中心連線的中點,到三棱柱頂點的距離相等,說明中心就是外接球的球心,
∴正三棱柱ABC-A1B1C1的外接球的球心為O,外接球的半徑為r,表面積為:4πr2.
球心到底面的距離為2,
底面中心到底面三角形的頂點的距離為:$\frac{2}{3}×\frac{\sqrt{3}}{2}×2$=$\frac{2\sqrt{3}}{3}$,
所以球的半徑為r=$\sqrt{4+\frac{4}{3}}$=$\frac{4\sqrt{3}}{3}$.
外接球的表面積為:4πr2=$\frac{64}{3}$π
故選:D.
點評 本題考查空間想象能力,計算能力;三棱柱上下底面中心連線的中點,到三棱柱頂點的距離相等,說明中心就是外接球的球心,是本題解題的關鍵,仔細觀察和分析題意,是解好數學題目的前提.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{\sqrt{2}}{2}$π | B. | $\frac{\sqrt{3}}{4}$π | C. | $\frac{\sqrt{3}}{2}$π | D. | $\sqrt{2}$π |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
P(K2≥k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com