7.函數(shù)f(x)=x2-2x-3在[0,3)上的值域?yàn)閇-4,0).

分析 先對函數(shù)式配方f(x)=(x-1)2-4,再根據(jù)二次函數(shù)的圖象和性質(zhì)得出f(x)的值域.

解答 解:f(x)=(x-1)2-4,
該函數(shù)的圖象為拋物線,開口向上,
且圖象關(guān)于直線x=1軸對稱,
當(dāng)x∈[0,3)時(shí),
f(x)min=f(1)=-4,
f(x)max=f(3)=0,(由于x<3,故此處不取“=”),
所以,函數(shù)的值域?yàn)椋篬-4,0),
故答案為:[-4,0).

點(diǎn)評 本題主要考查了函數(shù)值域的解法,涉及二次函數(shù)的圖象和性質(zhì),考查了配方法與數(shù)形結(jié)合的解題思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.等差數(shù)列{an}中,a2=3,a3+a4=9,則a1a6=14.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某企業(yè)為了解下屬某部門對本企業(yè)職工的服務(wù)情況,隨機(jī)訪問50名職工,根據(jù)這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為[40,50],[50,60],…,[80,90],[90,100]
(Ⅰ)求頻率分布圖中a的值;
(Ⅱ)估計(jì)該企業(yè)的職工對該部門評分不低于80的概率;
(Ⅲ)求出本次評分的眾數(shù)、中位數(shù)、平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知雙曲線的焦距為2$\sqrt{3}$,焦點(diǎn)到一條漸近線的距離為$\sqrt{2}$,則雙曲線的標(biāo)準(zhǔn)方程為( 。
A.x2-$\frac{{y}^{2}}{2}$=1B.$\frac{{x}^{2}}{2}$-y2=1
C.x2-$\frac{{y}^{2}}{2}$=1或y2-$\frac{{x}^{2}}{2}$=1D.$\frac{{x}^{2}}{2}$-y2=1或$\frac{{y}^{2}}{2}$-x2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=lg(1-x)+lg(1+x)+x4-2x2
(Ⅰ)判斷函數(shù)f(x)的奇偶性;
(Ⅱ) 設(shè)1-x2=t,把f(x)表示為關(guān)于t的函數(shù)g(t)并求其值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知直線y=1與曲線y=x2-|x|+a有四個(gè)交點(diǎn).
(1)求證:f(x)=x2-|x|+a為偶函數(shù).
(2)求當(dāng)x≥0時(shí),f(x)的解析式,并作出符合已知條件的函數(shù)f(x)圖象.
(3)求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知在公差不為零的等差數(shù)列{an}中,a5=3a2-1,且a1,a2,a4成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=3${\;}^{{a}_{2n}}$,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.給出下列命題:
①設(shè)拋物線y2=8x的準(zhǔn)線與x軸交于點(diǎn)Q,若過點(diǎn)Q的直線l與拋物線有公共點(diǎn),則直線l的斜率的取值范圍為[-1,1];
②A,B是拋物y2=2px(p>0)上的兩點(diǎn),且OA⊥OB,則A、B兩點(diǎn)的橫坐標(biāo)之積$\frac{p^2}{4}$;
③斜率為1的直線l與橢圓$\frac{x^2}{4}+{y^2}=1$相交于A、B兩點(diǎn),則|AB|的最大值為$\frac{{4\sqrt{10}}}{5}$.
把你認(rèn)為正確的命題的序號填在橫線上①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列命題中,錯(cuò)誤的是( 。
A.一條直線與兩個(gè)平行平面中的一個(gè)相交,則必與另一個(gè)相交
B.平行于同一個(gè)平面的兩個(gè)平面平行
C.一個(gè)平面與兩個(gè)平行平面相交,交線平行
D.平行于同一條直線的兩個(gè)平面平行

查看答案和解析>>

同步練習(xí)冊答案