1.已知圓M:(x-5)2+(y-3)2=9,圓N:x2+y2-4x+2y-9=0,則兩圓圓心的距離等于( 。
A.25B.10C.2$\sqrt{5}$D.5

分析 求出兩個圓的圓心坐標(biāo),利用距離公式求解即可.

解答 解:圓M:(x-5)2+(y-3)2=9的圓心坐標(biāo)(5,3),
圓N:x2+y2-4x+2y-9=0的圓心坐標(biāo)(2,-1),
則兩圓圓心的距離等于:${\sqrt{{(5-2)}^{2}+(3+1)^{2}}}^{\;}$=5.
故選:D.

點評 本題考查圓的方程的應(yīng)用,兩點距離公式的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若直線(k2-1)x-y+1-2k=0不過第二象限,則實數(shù)k的取值范圍[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一個焦點為$(-\sqrt{3},0)$,且實軸長為2.
(1)求雙曲線C的方程;  
(2)求直線$y=x-\sqrt{3}$被雙曲線C截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.第二屆世界互聯(lián)網(wǎng)大會在浙江省烏鎮(zhèn)開幕后,某科技企業(yè)為抓住互聯(lián)網(wǎng)帶來的機遇,決定開發(fā)生產(chǎn)一款大型電子設(shè)備.生產(chǎn)這種設(shè)備的年固定成本為500萬元,每生產(chǎn)x臺,需另投入成本為C(x)萬元.若年產(chǎn)量不足80臺時,C(x)=$\frac{1}{2}$x2+40x(萬元);若年產(chǎn)量不小于80臺時,C(x)=101x+$\frac{8100}{x}$-2180(萬元).每臺設(shè)備售價為100萬元,通過市場分析,該企業(yè)生產(chǎn)的電子設(shè)備能全部售完.
(1)求年利潤y(萬元)關(guān)于年產(chǎn)量x(臺)的函數(shù)關(guān)系式;
(2)年產(chǎn)量為多少臺時,該企業(yè)在這一電子設(shè)備的生產(chǎn)中所獲利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知直線1的參數(shù)方程是$\left\{\begin{array}{l}{x=3+\frac{4}{5}t}\\{y=-2+\frac{3}{5}t}\end{array}\right.(t∈R)$(t∈R),求過點(4,-1)且與l平行的直線m在y軸上的截距為-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.曲線y=$\sqrt{x}$在點($\frac{1}{4}$,$\frac{1}{2}$)處的切線的方程是4x-4y+1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.命題“?x∈R,x2-x+1<0”的否定是?x∈R,x2-x+1≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.“0<m<1”是“函數(shù)f(x)=3|x|在區(qū)間(m-1,2m)上不是單調(diào)函數(shù)”的充要條件.(選填“充要”或“充分不必要”或“必要不充分”或“既不充分也不必要”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.定義域為R的函數(shù)f(x)滿足f(x+2)=2f(x),當(dāng)x∈[0,2)時,f(x)=$\left\{\begin{array}{l}{x^2}-x,x∈[0,1)\\-{(\frac{1}{2})^{|{x-\frac{3}{2}}|}},x∈[1,2)\end{array}$,若當(dāng)x∈[-4,-2)時,不等式f(x)≥$\frac{t^2}{4}-t+\frac{1}{2}$恒成立,則實數(shù)t的取值范圍是( 。
A.[2,3]B.[1,3]C.[1,4]D.[2,4]

查看答案和解析>>

同步練習(xí)冊答案