10.已知橢圓C方程$\frac{x^2}{16}+\frac{y^2}{4}=1$,設(shè)P為橢圓上任意一點(diǎn),定點(diǎn)A(0,3),求|PA|的最大值.

分析 設(shè)P(x,y),代入橢圓方程可得x2=16$(1-\frac{{y}^{2}}{4})$.可得|PA|2=x2+(y-3)2=-3(y+1)2+28,利用二次函數(shù)的單調(diào)性即可得出.

解答 解:設(shè)P(x,y),則$\frac{x^2}{16}+\frac{y^2}{4}=1$,可得x2=16$(1-\frac{{y}^{2}}{4})$.
∴|PA|2=x2+(y-3)2=16$(1-\frac{{y}^{2}}{4})$+(y-3)2=-3y2-6y+25=-3(y+1)2+28,
∵-2≤y≤2,
∴y=-1,x=±2$\sqrt{3}$時(shí),|PA|2取得最大值28,
即|PA|的最大值為2$\sqrt{7}$.

點(diǎn)評(píng) 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、二次函數(shù)的單調(diào)性、兩點(diǎn)之間的距離公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.圓心在直線2x-3y-1=0上的圓與x軸交于A(1,0),B(3,0)兩點(diǎn),則圓的方程為( 。
A.(x-2)2+(y+1)2=2B.(x+2)2+(y-1)2=2C.(x-1)2+(y-2)2=2D.(x-2)2+(y-1)2=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,一條準(zhǔn)線方程為x=$\frac{8}{3}$$\sqrt{3}$.
(1)求橢圓C的方程;
(2)設(shè)P(8,0),M,N是橢圓C上關(guān)于x軸對(duì)稱的兩個(gè)不同的點(diǎn),連結(jié)PN交橢圓C于另一點(diǎn)E,求證:直線ME與x軸相交于定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.把函數(shù)y=f(x)的圖象向右平移$\frac{π}{6}$個(gè)單位,得到$y=2sin(3x-\frac{π}{4})$的圖象,則函數(shù)y=f(x)的解析式是y=2sin(3x+$\frac{π}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=Asin(ωx+ϕ)(A≠0,ω>0,-π<ϕ<0)在$x=\frac{2π}{3}$時(shí)取得最大值,且它的最小正周期為π,則(  )
A.f(x)的圖象過點(diǎn)$(0,\frac{1}{2})$B.f(x)在$[{\frac{π}{6},\frac{2π}{3}}]$上是減函數(shù)
C.f(x)的一個(gè)對(duì)稱中心是$({\frac{5π}{12},0})$D.f(x)的圖象的一條對(duì)稱軸是$x=\frac{5π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知f(x)是定義在R上的偶函數(shù),且在[0,+∞)上為增函數(shù),$f({\frac{1}{3}})=0$,則不等式$f({{{log}_{\frac{1}{3}}}x})>0$的解集為{x|x>$\frac{\root{3}{9}}{3}$或0<x<$\root{3}{3}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.若f(x)=1-2a-2asinx-2cos2x的最小值為g(a).
(1)求g(a)的表達(dá)式
(2)當(dāng)g(a)=$\frac{1}{2}$時(shí),求a的值,并求此時(shí)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.觀察下列式子:1,1+2+1,1+2+3+2+1,1+2+3+4+3+2+1,…由此可推測(cè)出一個(gè)一般性的結(jié)論:對(duì)于n∈N*,1+2+…+n+…+2+1=n2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若冪函數(shù)$f(x)=({m^2}-3m+3){x^{{m^2}+m-2}}$的圖象不經(jīng)過原點(diǎn),則實(shí)數(shù)m的值為(  )
A.1或2B.1或-2C.1D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案