【題目】已知點為圓的圓心, 是圓上動點,點在圓的半徑上,且有點和上的點,滿足
(1)當在圓上運動時,求點的軌跡方程;
(2)若斜率為的直線與圓相切,與(1)中所求點的軌跡教育不同的兩點 是坐標原點,且時,求的取值范圍.
科目:高中數學 來源: 題型:
【題目】省環(huán)保研究所對某市市中心每天環(huán)境放射性污染情況進行調查研究后,發(fā)現一天中環(huán)境綜合放射性污染指數與時刻 (時)的關系為,其中是與氣象有關的參數,且,若用每天的最大值為當天的綜合放射性污染指數,并記作.
(1)令.求的取值范圍;
(2)求;
(3)省政府規(guī)定,每天的綜合放射性污染指數不得超過2,試問目前該市市中心的綜合放射性污染指數是否超標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,橢圓C: =1(a>b>0)的離心率為 ,以原點為圓心,橢圓C的短半軸長為半徑的圓與直線x﹣y+2=0相切.
(1)求橢圓C的方程;
(2)已知點P(0,1),Q(0,2).設M,N是橢圓C上關于y軸對稱的不同兩點,直線PM與QN相交于點T,求證:點T在橢圓C上.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某保險公司有一款保險產品的歷史收益率(收益率=利潤÷保費收入)的頻率分布直方圖如圖所示:
(Ⅰ)試估計平均收益率;
(Ⅱ)根據經驗,若每份保單的保費在20元的基礎上每增加元,對應的銷量(萬份)與(元)有較強線性相關關系,從歷史銷售記錄中抽樣得到如下5組與的對應數據:
據此計算出的回歸方程為.
(i)求參數的估計值;
(ii)若把回歸方程當作與的線性關系,用(Ⅰ)中求出的平均收益率估計此產品的收益率,每份保單的保費定為多少元時此產品可獲得最大收益,并求出該最大收益.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com