3.由曲線y=x3,直線x=0,x=1及y=0所圍成的曲邊梯形的面積為( 。
A.1B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

分析 首先由題意畫(huà)出草圖,利用定積分的幾何意義求曲邊梯形的面積.

解答 解:如圖,曲線y=x3,直線x=0,x=1及y=0所圍成的曲邊梯形,其面積為${∫}_{0}^{1}{x}^{3}dx=\frac{1}{4}{x}^{4}{|}_{0}^{1}=\frac{1}{4}$;
故選D.

點(diǎn)評(píng) 本題考查了定積分在幾何中的運(yùn)用;關(guān)鍵是利用定積分表示曲邊梯形的面積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.分別寫(xiě)有數(shù)字1,2,3,4的4張卡片,從這4張卡片中隨機(jī)抽取2張,則取出的2張卡片上的數(shù)字之和為偶數(shù)的概率是$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.定義域?yàn)閇a,b]的函數(shù)f(x)的圖象的左、右端點(diǎn)分別為A、B,點(diǎn)M(x,y)是f(x)的圖象上的任意一點(diǎn),且x=λa+(1-λ)b(λ∈R).向量$\overrightarrow{ON}=λ\overrightarrow{OA}+(1-λ)\overrightarrow{OB}$,其中O為坐標(biāo)原點(diǎn).若|$\overrightarrow{MN}$|≤k恒成立,則稱函數(shù)f(x)在[a,b]上“k階線性相似”.若函數(shù)y=x2-3x+2在[1,3]上“k階線性相似”,則實(shí)數(shù)k的取值范圍為( 。
A.[0,+∞]B.[1,+∞]C.[$\frac{3}{2}$,+∞]D.[$\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,點(diǎn)A,B,C在同一水平面上,AC=4,CB=6,現(xiàn)要在點(diǎn)C處搭建一個(gè)觀測(cè)站CD,點(diǎn)D在頂端.
(1)原計(jì)劃CD為鉛垂線方向,α=45°,求CD的長(zhǎng);
(2)搭建完成后,發(fā)現(xiàn)CD與鉛垂線方向有偏差,并測(cè)得β=30°,α=53°,求CD2(結(jié)果精確到1);
(本題參考數(shù)據(jù):sin97°≈1,cos53°≈0.6,$\sqrt{2}$=1.4,3$\sqrt{3}$≈5.2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知橢圓C與橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{9}$=1有相同的焦點(diǎn),且橢圓C經(jīng)過(guò)點(diǎn)P(2,-3),求橢圓C的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知x,y滿足約束條件$\left\{\begin{array}{l}{x≥1}\\{y≥-1}\\{4x+y≤9}\\{x+y≤3}\end{array}\right.$,若2≤m≤4,則目標(biāo)函數(shù)z=y+mx的最大值的變化范圍是( 。
A.[1,3]B.[4,6]C.[4,9]D.[5,9]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在等差數(shù)列{an}中,a5=6,a8=10,求a14

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若等比數(shù)列的各項(xiàng)均為正數(shù),前4項(xiàng)的和為9,積為$\frac{81}{4}$,則前4項(xiàng)倒數(shù)的和為(  )
A.$\frac{3}{2}$B.$\frac{9}{4}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-1,3),$\overrightarrow{c}$=λ$\overrightarrow{a}$+$\overrightarrow$,λ∈R.
(1)若向量$\overrightarrowwagkgqy$=(14,-2)且$\overrightarrow{c}⊥\overrightarrowi4ocu0k$,求實(shí)數(shù)λ的值;
(2)求|$\overrightarrow{c}$|的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案