12.在長(zhǎng)方體ABCD-A1B1C1D1中,|AB|=|BC|=2,|D1D|=3,點(diǎn)M是B1C1的中點(diǎn),點(diǎn)N是AB的中點(diǎn).建立如圖所示的空間直角坐標(biāo)系.
(1)寫出點(diǎn)D,N,M的坐標(biāo);
(2)求線段MD,MN的長(zhǎng)度.

分析 (1)由已知條件,利用長(zhǎng)方體的結(jié)構(gòu)特征,能求出點(diǎn)D,N,M的坐標(biāo).
(2)直接利用兩點(diǎn)間距離公式公式求解.

解答 解:(1)∵D是原點(diǎn),則D(0,0,0).
由|AB|=|BC|=2,|D1D|=3,
得A(2,0,0),B(2,2,0),C(0,2,0),B1(2,2,3),C1(0,2,3).
又∵N是AB的中點(diǎn),∴N(2,1,0).
∵點(diǎn)M是B1C1的中點(diǎn),M(1,2,3).
(2)由兩點(diǎn)間距離公式,得
|MD|=$\sqrt{(1-0)^{2}+(2-0)^{2}+(3-0)^{2}}$=$\sqrt{14}$,
|MN|=$\sqrt{(2-1)^{2}+(1-2)^{2}+(0-3)^{2}}$=$\sqrt{11}$.

點(diǎn)評(píng) 本題考查空間中點(diǎn)的坐標(biāo)的求法,考查線段長(zhǎng)的求法,是大項(xiàng)貞,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知離散型隨釩變量ξ的分布列為
ξ0123
P0.40.30.20.1
則Eξ=( 。
A.0.6B.0.2C.0.3D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.求下列函數(shù)的值域
(1)y=3sinx-2;
(2)y=$\frac{1}{2}$-sinx;
(3)y=2|sinx|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知△ABC的面積為$\frac{16}{3}$$\sqrt{3}$,BC=6,∠A=60°,求△ABC的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在三棱柱ABC-A1B1C1中,已知AB⊥側(cè)面BB1C1C,AB=BC=1,BB1=2,∠BCC1=$\frac{π}{3}$.
(1)求證:C1B⊥平面ABC;
(2)點(diǎn)B1到平面ACC1A1的距離為d1,點(diǎn)A1到平面ABC1的距離為d2,求$\frac{7rvrj7n_{1}}{l17nv97_{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,四棱錐P-ABCD,側(cè)面PAD是邊長(zhǎng)為2的正 三角形,且與底面垂直,底面ABCD是∠ABC=60°的菱形.
(1)求證:PC⊥AD;
(2)求點(diǎn)D到平面PAC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在四棱錐P-ABCD中,側(cè)面PCD⊥底面ABCD,PD⊥CD,底面ABCD是直角梯形,AB∥DC,∠ADC=90°,AB=AD=PD=1,CD=2,點(diǎn)E位PC的中點(diǎn)
(Ⅰ)求證:BC⊥平面PBD;
(Ⅱ)求E到平面PBD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)函數(shù)f(x)=|f1(x)-f2(x)|,其中冪函數(shù)f1(x)的圖象過點(diǎn)(2,$\sqrt{2}$),且函數(shù)f2(x)=ax+b(a,b∈R).
(1)當(dāng)a=0,b=1時(shí),寫出函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)μ為常數(shù),a為關(guān)于x的偶函數(shù)y=log4[($\frac{1}{2}$)x+μ•2x](x∈R)的最小值,函數(shù)f(x)在[0,4]上的最大值為u(b),求函數(shù)u(b)的最小值;
(3)若對(duì)于任意x∈[0,1],均有|f2(x)|≤1,求代數(shù)式(a+1)(b+1)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知F1,F(xiàn)2是橢圓$\frac{{y}^{2}}{25}$+$\frac{{x}^{2}}{9}$=1的兩個(gè)焦點(diǎn),過點(diǎn)F2的直線交橢圓于M,N兩點(diǎn),在△F1MN中,若有兩邊之和是14,則第三邊的長(zhǎng)度為( 。
A.6B.5C.4D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案