12.?dāng)?shù)列{an+1-2an}的前n項(xiàng)和為Sn=3n,且a1=1,則an=2n+1-3.

分析 通過遞推關(guān)系得an+1-2an=Sn+1-Sn=3,變形后構(gòu)造等比數(shù)列{an+3},從而得到結(jié)論.

解答 解:∵Sn+1-Sn=3(n+1)-3n=3,
∴an+1-2an=3,
∴an+1+3=2(an+3),
又∵a1=1,∴a1+3=4,
即數(shù)列{an+3}是以4為首項(xiàng),以2為公比的等比數(shù)列,
所以an+3=4×2n-1=2n+1,
從而an=2n+1-3,
故答案為:2n+1-3.

點(diǎn)評 本題考查數(shù)列的通項(xiàng)公式,遞推關(guān)系,通過對表達(dá)式的變形構(gòu)造一個(gè)新的等比數(shù)列是解決本題的關(guān)鍵,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知關(guān)于x的不等式ax2-x-a+1>0,若a∈R,求不等式的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某環(huán)境保護(hù)部門對某處的環(huán)境狀況用“污染指數(shù)”來監(jiān)測,據(jù)監(jiān)測,該處的“污染指數(shù)”與附近污染源的強(qiáng)度成正比,且與距離成反比,比例系數(shù)分別為常數(shù)k1、k2(k1>0,k2>0),現(xiàn)已知相距36km的A、B兩家化工廠(污染源)的污染強(qiáng)度分別為1和25,它們連線段上任意一點(diǎn)C處的污染指數(shù)y等于兩化工廠對該處的“污染指數(shù)”之和,設(shè)AC=x(km).
(1)試將y表示為x的函數(shù),并指出定義域;
(2)確定A、B連線段上何處的“污染指數(shù)”最小,并求出這個(gè)最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.用數(shù)學(xué)歸納法證明等式1(n2-12)+2(n2-22)+…+n(n2-n2)=$\frac{1}{4}$n4-$\frac{1}{4}$n2對一切正整數(shù)n都成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知x2+x-2=2,求x-x-1的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,△P′AB是邊長為$\sqrt{3}$+1的等邊三角形,P′C=P′D=$\sqrt{3}$-1,現(xiàn)將△P′CD沿邊CD折起至PCD將四棱錐P-ABCD,且PC⊥BD.
(Ⅰ)證明:BD⊥平面PAC;
(Ⅱ)求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖所示,一個(gè)直徑AB=2的半圓,過點(diǎn)A作這個(gè)圓所在平面的垂線,在垂線上取一點(diǎn)S,使AS=AB,C為半圓上的一個(gè)動點(diǎn),M、N分別在SB、SC上,且AN⊥SC,AM⊥SB.
(1)證明:AN⊥BC;
(2)證明:SB⊥面ANM;
(3)求三棱錐S-AMN體積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知等差數(shù)列{an}中,公差d>0,等比數(shù)列{bn}中,b1>0,公比q>0且q≠1,若an-a1>logabn-logab1(n>1,n∈N,a>0,a≠1),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某玩具廠生產(chǎn)甲、乙兩種兒童玩具,其質(zhì)量按測試指示劃分:指示大于或等于85為合格品,小于85為次品,現(xiàn)隨機(jī)抽取這兩種玩具個(gè)100件進(jìn)行檢測,檢測結(jié)果統(tǒng)計(jì)如下:
 測試指示[75,80)[80,85)[85,90)[90,95)[95,100)
 玩具甲 8 22 30 32 8
 玩具乙 7 18 40 29 6
(1)試分別估計(jì)玩具甲,玩具乙為合格品的概率
(2)生產(chǎn)一件玩具甲,若是合格品可盈利80圓,若是次品則虧損15元,生產(chǎn)一件玩具乙,若是合格品可盈利50圓,若是次品則虧損10元,在(1)的前提下,①記X為生產(chǎn)1件玩具甲和1件玩具乙所得的總利潤,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.②求生產(chǎn)5件玩具乙所獲得的利潤不少于140元的概率.

查看答案和解析>>

同步練習(xí)冊答案