分析 利用正弦定理把已知等式化邊為角,求出B,可得三角形為等邊三角形,則面積可求.
解答 解:△ABC中,∵b=2acosB,
∴根據(jù)正弦定理,得sinB=2sinAcosB,
又∵A=$\frac{π}{3}$,
∴sinB=2sin$\frac{π}{3}$cosB,
即sinB=$\sqrt{3}$cosB,可得tanB=$\sqrt{3}$.
∵B∈(0,π),∴B=$\frac{π}{3}$;
∵A=$\frac{π}{3}$,B=$\frac{π}{3}$,
∴C=π-(A+B)=$\frac{π}{3}$.
則a=b=c=1,
∴S△ABC=$\frac{1}{2}×1×1×sin\frac{π}{3}=\frac{\sqrt{3}}{4}$.
故答案為:$\frac{\sqrt{3}}{4}$.
點(diǎn)評(píng) 本題已知三角形的邊和角的關(guān)系式,求三角形的面積,著重考查了正弦定理、同角三角函數(shù)的基本關(guān)系與三角形的面積求法等知識(shí),屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overline x$甲>$\overline x$乙,甲比乙得分穩(wěn)定 | B. | $\overline x$甲>$\overline x$乙,乙比甲得分穩(wěn)定 | ||
C. | $\overline x$甲<$\overline x$乙,甲比乙得分穩(wěn)定 | D. | $\overline x$甲<$\overline x$乙,乙比甲得分穩(wěn)定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 60° | C. | 120° | D. | 150° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4π}{3}$ | B. | $\frac{2π}{3}$ | C. | $\frac{π}{3}$ | D. | -$\frac{π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com