11.函數(shù)f(x)=lnx+x2-x-2的零點個數(shù)為1.

分析 求導(dǎo)數(shù),確定函數(shù)的單調(diào)性,再利用零點存在定理,即可得出結(jié)論.

解答 解:∵f(x)=lnx+x2-x-2,
∴f′(x)=$\frac{2{x}^{2}-x+1}{x}$>0,
∴函數(shù)在(0,+∞)單調(diào)遞增,
∵f(1)=-2<0,f(2)=ln2>0
∴函數(shù)f(x)=lnx+x2-x-2的零點在(1,2),
故答案為:1.

點評 本題考查函數(shù)的零點,考查零點存在定理,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知cos(α+$\frac{π}{4}$)=$\frac{3}{5}$,0<α<$\frac{π}{4}$,求sinα和cos(2α+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知數(shù)列{an}的通項公式為${a}_{n}=(-1)^{n}×(2n-1)$,求其前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.log327-3${\;}^{lo{g}_{3}2}$+$\sqrt{(-2)^{2}}$+(2$\frac{7}{9}$)${\;}^{\frac{1}{2}}$+sin(-$\frac{π}{6}$)=$\frac{25}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若函數(shù)f(x)=x2+|x+a|-1有兩個不同零點,則實數(shù)a的取值范圍是(-$\frac{5}{4}$,$\frac{5}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知直線1:x-y+b=0被圓C:(x-2)2+y2=3截得的弦長為2,則b=0或-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.正項等比數(shù)列{an}中,a1,a4029為方程x2-10x+16=0的兩根,則log2a2015的值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知sin2θ=$\frac{3}{5}$,且0<2θ<$\frac{π}{2}$,則$\frac{2co{s}^{2}\frac{θ}{2}-sinθ-1}{\sqrt{2}sin(θ+\frac{π}{4})}$的值為( 。
A.1B.2C.$\frac{1}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知向量$\overrightarrow{a}$=(sinx+cosx,-cosx),$\overrightarrow$=(sinx+cosx,sinx),f(x)=$\overrightarrow{a}$$•\overrightarrow$
(Ⅰ)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間;
(Ⅱ)x∈[-$\frac{π}{6}$,$\frac{3π}{8}$]時,求函數(shù)f(x)的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊答案