1.已知cos(α+$\frac{π}{4}$)=$\frac{3}{5}$,0<α<$\frac{π}{4}$,求sinα和cos(2α+$\frac{π}{4}$)的值.

分析 由條件利用同角三角函數(shù)的基本關(guān)系,求得sin(α+$\frac{π}{4}$)的值,利用兩角和差的三角公式可得sinα=sin[(α+$\frac{π}{4}$)-$\frac{π}{4}$]的值,再求出cosα,可得cos(2α+$\frac{π}{4}$)的值.

解答 解:∵cos(α+$\frac{π}{4}$)=$\frac{3}{5}$,0<α<$\frac{π}{4}$,∴sin(α+$\frac{π}{4}$)=$\sqrt{{1-cos}^{2}(α+\frac{π}{4})}$=$\frac{4}{5}$,
∴sinα=sin[(α+$\frac{π}{4}$)-$\frac{π}{4}$]=sin(α+$\frac{π}{4}$)cos$\frac{π}{4}$-cos(α+$\frac{π}{4}$)sin$\frac{π}{4}$=$\frac{4}{5}•\frac{\sqrt{2}}{2}$-$\frac{3}{5}•\frac{\sqrt{2}}{2}$=$\frac{\sqrt{2}}{10}$,
∴cosα=$\sqrt{{1-sin}^{2}α}$=$\frac{7\sqrt{2}}{10}$,
∴cos(2α+$\frac{π}{4}$)=sin(α+$\frac{π}{4}$)cosα+cos(α+$\frac{π}{4}$)sinα=$\frac{4}{5}•\frac{7\sqrt{2}}{10}$+$\frac{3}{5}•\frac{\sqrt{2}}{10}$=$\frac{31\sqrt{2}}{50}$.

點評 本題主要考查同角三角函數(shù)的基本關(guān)系,兩角和差的三角公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖可能是下列哪個函數(shù)的圖象(  )
A.y=x2-x2-1B.y=$\frac{x}{lnx}$C.y=$\frac{{2}^{x}sinx}{{4}^{x}+1}$D.y=(x2-2x)ax

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若點A(1,1),B(0,a),C(2,b)(a>0,b>0)三點共線,則$\frac{1}{a}$+$\frac{1}$的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.求離心率e=$\frac{\sqrt{5}}{2}$,過點P(3,-$\sqrt{2}$)的雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若x軸的正半軸上的點M到原點的距離與到點(5,-3)的距離相等,則M點的坐標(biāo)是( 。
A.(1,0)B.($\frac{3}{2}$,0)C.($\frac{17}{5}$,0)D.(±$\frac{17}{5}$,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知sin(π-α)-cos(π+α)=$\frac{\sqrt{2}}{3}$,其中0<α<π,求tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)f(x)=$\frac{{4}^{x}}{{4}^{x}+2}$,則f($\frac{1}{2015}$)+f($\frac{2}{2015}$)+…+f($\frac{2014}{2015}$)=1007.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$滿足$\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$=$\overrightarrow{0}$,$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,且|$\overrightarrow{a}$|=|$\overrightarrow$|=2,則$\overrightarrow{a}$•$\overrightarrow{c}$=( 。
A.2$\sqrt{3}$B.-6C.6D.-2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)f(x)=lnx+x2-x-2的零點個數(shù)為1.

查看答案和解析>>

同步練習(xí)冊答案