分析 (1)利用等比數(shù)列的通項公式即可得出;
(2)利用“錯位相減法”、等比數(shù)列的前n項和公式即可得出.
解答 解:(1)設(shè)各項均為正數(shù)的等比數(shù)列{an}的公比為q>0,
∵a1a2=2,a3a4=32,∴q4=16,解得q=2,a1=1.
∴${a}_{n}={2}^{n-1}$.
(2)bn=(2n-1)an=(2n-1)×2n-1,
∴數(shù)列{bn}的前n項和Tn=1+3×2+5×22+…+(2n-1)×2n-1,
2Tn=2+3×22+5×23+…+(2n-3)×2n-1+(2n-1)×2n,
∴-Tn=1+2×2+2×22+2×23+…+2×2n-1-(2n-1)×2n=$\frac{2({2}^{n}-1)}{2-1}$-1-(2n-1)×2n=(3-2n)×2n-3,
∴${T}_{n}=(2n-3)×{2}^{n}+3$.
點評 本題考查了等比數(shù)列的通項公式及其前n項和公式、“錯位相減法”,考查了推理能力與計算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=±$\sqrt{3}$x | B. | y=±$\sqrt{2}$x | C. | y=±$\frac{\sqrt{2}}{2}$x | D. | y=±$\frac{\sqrt{3}}{3}$x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 已知a,b∈R,則“$\frac{{{a^2}+{b^2}}}{ab}≤-2$”是“a>0且b<0”的充分不必要條件 | |
B. | 已知數(shù)列{an}為等比數(shù)列,則“a1<a2<a3”是“a4<a5”的既不充分也不必要條件 | |
C. | 已知兩個平面α,β,若兩條異面直線m,n滿足m?α,n?β且m∥β,n∥α,則α∥β | |
D. | ?x0∈(-∞,0),使${3^{x_0}}<{4^{x_0}}$成立 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com