11.在空間直角坐標(biāo)系中,點(diǎn)A(1,1,1)關(guān)于x軸的對(duì)稱點(diǎn)為B,則點(diǎn)A與點(diǎn)B的距離是2$\sqrt{2}$.

分析 求出點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)B的坐標(biāo),計(jì)算|AB|即可.

解答 解:∵A(1,1,1)關(guān)于x軸的對(duì)稱點(diǎn)為B,
∴B(1,-1,-1),
∴|AB|=$\sqrt{{(1-1)}^{2}{+(1+1)}^{2}{+(1+1)}^{2}}$=2$\sqrt{2}$.
故答案為:$2\sqrt{2}$.

點(diǎn)評(píng) 本題考查了空間中的對(duì)稱與兩點(diǎn)間距離公式的應(yīng)用問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.對(duì)a,b∈R,記min{a,b}=$\left\{\begin{array}{l}{a,a≤b}\\{b,a>b}\end{array}\right.$,函數(shù)f(x)=min{-|x|,-x2+4x+6}的最大值是( 。
A.6B.1C.0D.$\frac{3-\sqrt{33}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.過(guò)拋物線C:y2=4x的焦點(diǎn)F作直線l交拋物線C于A,B兩點(diǎn),若A到拋物線的準(zhǔn)線的距離為6,則|AB|=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.某校對(duì)該校的1000名教師的年齡進(jìn)行統(tǒng)計(jì)分析,年齡的頻率分布直方圖如圖所示.規(guī)定年齡[25,40)的為青年教師,年齡[40,50)為中年教師,年齡在[50,60)為老年教師.
(I)求年齡[30,35)、[40,45)的教師人數(shù);
(Ⅱ)現(xiàn)用分層抽樣的方法從中、青年中抽取18人進(jìn)行課堂展示,求抽到年齡在[35,40)的人數(shù).
(Ⅲ)在(Ⅱ)中抽取的中年教師中,隨機(jī)選取2名教師進(jìn)行總結(jié)交流,求抽取的中年教師中甲、乙至少有一名作總結(jié)交流的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.如圖,莖葉圖記錄了某!按杭具\(yùn)動(dòng)會(huì)”甲、乙兩名運(yùn)動(dòng)員的成績(jī),他們的平均成績(jī)均為82分,則x+y=( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.寫出命題:“對(duì)任意實(shí)數(shù)m,關(guān)于x的方程x2+x+m=0有實(shí)根”的否定為存在實(shí)數(shù)m,關(guān)于x的方程x2+x+m=0沒有實(shí)數(shù)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知斜率為1的直線l經(jīng)過(guò)拋物線y2=2px(p>0)的焦點(diǎn)F,且與拋物線相交于A,B兩點(diǎn),|AB|=4.
(I)求p的值;
(Ⅱ)設(shè)經(jīng)過(guò)點(diǎn)B和拋物線對(duì)稱軸平行的直線交拋物線y2=2px的準(zhǔn)線于點(diǎn)D,求證:A,O,D三點(diǎn)共線(O為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知數(shù)列{an}的前n項(xiàng)和為${S_n}={n^2}-2n$,則a3+a17=( 。
A.36B.35C.34D.33

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.為了解某班學(xué)生喜好體育運(yùn)動(dòng)是否與性別有關(guān),對(duì)本班50人進(jìn)行了問(wèn)卷調(diào)查得到了如下的列聯(lián)表:
已知喜好體育運(yùn)動(dòng)與否,采用分層抽樣法抽取容量為10的樣本,則抽到喜好體育運(yùn)動(dòng)的人數(shù)為6.
(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;
(2)能否在犯錯(cuò)誤的概率不超過(guò)0.005的前提下認(rèn)為喜好體育運(yùn)動(dòng)與性別有關(guān)?說(shuō)明你的理由;
喜好體育運(yùn)動(dòng)不喜好體育運(yùn)動(dòng)合計(jì)
男生5
女生10
合計(jì)50
下面的臨界值表供參考:
P(k2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=$\frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

同步練習(xí)冊(cè)答案