2.設(shè)a,b,c為空間中三條不同的直線,給出如下兩個(gè)命題:
①若a∥b,b⊥c,則a⊥c;②若a⊥b,b⊥c,則a∥c.
試類比以上某個(gè)命題,寫出一個(gè)正確的命題:設(shè)α,β,γ為三個(gè)不同的平面,若α∥β,β⊥γ,則α⊥γ.

分析 根據(jù)已知的兩個(gè)命題,類比:一個(gè)平面垂直于兩個(gè)平行平面中的一個(gè),也垂直于另一個(gè),是正確的;若類比α⊥β,β⊥γ,則α∥γ是錯(cuò)誤的.

解答 解:由已知可以類比①為若α∥β,β⊥γ,則α⊥γ;由面面平行和面面垂直的性質(zhì)定理以及面面垂直的判定定理可以判斷是正確命題;
故答案為:若α∥β,β⊥γ,則α⊥γ.

點(diǎn)評 本題考查空間中直線與平面之間的位置關(guān)系,解題的關(guān)鍵是有著較好的空間想像能力,以及對每個(gè)命題涉及的定理定義等熟練掌握并能靈活運(yùn)用它們解題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知向量$\overrightarrow{a}$=(1,y),$\overrightarrow$=(-4,y),且$\overrightarrow{a}$⊥$\overrightarrow$,則y=±2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知數(shù)列{an}滿足a1=$\frac{1}{4}$,a2=$\frac{3}{4}$,2an=an+1+an-1(n≥2,n∈N*),數(shù)列{bn}滿足b1=1,3bn-bn-1=n(n≥2,n∈N*),數(shù)列{bn}的前n項(xiàng)和為Sn
(1)求證:數(shù)列{bn-an}為等比數(shù)列;
(2)求數(shù)列{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.某幾何體的三視圖如圖所示,其中俯視圖為半徑為2的四分之一個(gè)圓弧,則該幾何體的體積為8-2π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知x、y是[0,1]上的兩個(gè)隨機(jī)數(shù),則點(diǎn)M(x,y)到點(diǎn)(0,1)的距離小于其到直線y=-1的距離的概率為( 。
A.$\frac{1}{12}$B.$\frac{3}{4}$C.$\frac{7}{8}$D.$\frac{11}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知全集U={1,2,3,4,5,6,7},A={l,2,3},B={2,5,7},則集合M∩(∁UB)=( 。
A.{1}B.{2}C.{1,3}D.{1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知集合A={x|x2-16≤0,x∈R},B={x||x-3|≤a,x∈R},若B⊆A,則正實(shí)數(shù)a的取值范圍是(0,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在平面直角坐標(biāo)系xOy中,點(diǎn)列A1(x1,y1),A2(x2,y2),…,An(xn,yn),…,滿足$\left\{\begin{array}{l}{x_{n+1}}=\frac{1}{2}({x_n}+{y_n})\;\\{y_{n+1}}=\frac{1}{2}({x_n}-{y_n})\;\end{array}$若A1(1,1),則$\lim_{n→∞}(|O{A_1}|+|O{A_2}|+…+|O{A_n}|)$=$2+2\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在公差不為0的等差數(shù)列{an}中,a2,a4,a8成公比為a2的等比數(shù)列.
(I)求數(shù)列{an}的通項(xiàng)公式;
(II)設(shè)數(shù)列{bn}滿足bn=$\left\{\begin{array}{l}{{2}^{{a}_{n}},n=2k,k∈{N}^{+}}\\{2{a}_{n},n=2k-1,k∈{N}^{+}}\end{array}\right.$.
①求數(shù)列{bn}的前n項(xiàng)和為Tn;
②令c2n-1=$\frac{_{2n}}{_{2n-1}}$(n∈N+),求使得c2n-1>10成立的所有n的值.

查看答案和解析>>

同步練習(xí)冊答案