19.若x>0,則f(x)=4x+$\frac{9}{x}$的最小值是12.

分析 直接利用基本不等式求解函數(shù)的最小值即可.

解答 解:x>0,則f(x)=4x+$\frac{9}{x}$≥2$\sqrt{4x•\frac{9}{x}}$=12.當(dāng)且僅當(dāng)x=$\frac{3}{2}$時(shí)取等號(hào).
x>0,則f(x)=4x+$\frac{9}{x}$的最小值是12.
故答案為:12.

點(diǎn)評(píng) 本題考查基本不等式的應(yīng)用,最小值的求法,注意等號(hào)成立的條件.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{2x+y≤8}\\{x+y≥a}\\{x≥0}\end{array}\right.$,且z=60x+20y的最大值為200,則a等于( 。
A.4B.6C.3D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.經(jīng)過(guò)函數(shù)$y=\frac{1}{x}$上一點(diǎn)M引切線l與x軸、y軸分別交于點(diǎn)A和點(diǎn)B,O為坐標(biāo)原點(diǎn),記△OAB的面積為S,則S=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.函數(shù)$y=\frac{sinx}{tanx}$的定義域是{x|$x≠\frac{kπ}{2}$,k∈Z}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.(1)計(jì)算log25625+lg0.01+ln$\sqrt{e}$-2;
(2)已知tan(π+α)=3,求$\frac{2cos(π-a)-3sin(π+a)}{4cos(-a)+sin(2π-a)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知$f(x)=\left\{\begin{array}{l}f(\frac{x}{2})\;(x≥1000)\\ x(x<1000)\end{array}\right.$,則f(2016)=_504.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{\frac{1}{2}x+1,x≤2}\\{lnx,x>2}\end{array}}\right.$,方程f(x)-ax=0恰有3個(gè)不同實(shí)根,則實(shí)數(shù)a的取值范圍是( 。
A.$(\frac{ln2}{2},\frac{1}{e})$B.$(0,\frac{1}{2})$C.$(0,\frac{1}{e})$D.$(\frac{1}{e},\frac{1}{2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.過(guò)P(-4,1)的直線?與拋物線y2=4x僅有一個(gè)公共點(diǎn),則這樣的直線?有( 。l.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知x,y滿足約柬?xiàng)l件$\left\{\begin{array}{l}{x-y-1≤0}\\{2x-y-3≥0}\end{array}\right.$,當(dāng)目標(biāo)函數(shù)z=ax+by(a>0,b>0)在該約束條件下取到最小值2時(shí),則$\frac{3}{a}$+$\frac{2}$的最小值為( 。
A.$\frac{25}{6}$B.4$+\sqrt{3}$C.4$+2\sqrt{3}$D.4$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案