分析 (1)連結(jié)AM,則可證△BCM為等邊三角形,從而PN⊥BM,由面面垂直得出PN⊥平面ABMD,故而PN⊥AB;
(2)連結(jié)PC,由中位線定理得EN∥PC,故而EN∥平面PDM.
解答 證明:(1)連結(jié)AM,
∵M(jìn)是的CD的中點,AB=$\frac{1}{2}$CD,AB∥CD,
∴四邊形ABCM是平行四邊形,四邊形ABMD是平行四邊形,
∴N是BM的中點,BM=AD,又∵AD=BC,
∴△BCM是等邊三角形,即△PBM是等邊三角形.
∴PN⊥BM,∵平面PBM⊥平面ABMD,平面PBM∩平面ABMD=BM,PN?平面PBM,
∴PN⊥平面ABMD,∵AB?平面ABMD,
∴AB⊥PN.
(2)連結(jié)PC,∵E是PA的中點,N是AC的中點,
∴EN∥PC,
∵PC?平面PDM,EN?平面PDM,
∴EN∥平面PDM.
點評 本題考查了線面垂直的判斷與性質(zhì),線面平行的判定,面面垂直的性質(zhì),屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | ||||
C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{14}}{4}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com