17.已知正項(xiàng)數(shù)列{an}滿足a1=22,an+1(an+1-2n)=an(an+2n),則當(dāng)$\frac{{a}_{n}}{n}$取得最小值時,n=5.

分析 化簡可得(an+1+an)(an+1-an-2n)=0,從而可得an+1-an-2n=0,再利用累加法求得an=n(n-1)+22,從而結(jié)合函數(shù)的性質(zhì)求解.

解答 解:∵an+1(an+1-2n)=an(an+2n),
∴(an+1+an)(an+1-an-2n)=0,
∵an>0,
∴an+1-an-2n=0,
∴a2-a1=2,a3-a2=4,a4-a3=6,…,an-an-1=2(n-1),
累加可得,
an-a1=2+4+6+…+2(n-1)=n(n-1),
故an=n(n-1)+22,
故$\frac{{a}_{n}}{n}$=n-1+$\frac{22}{n}$=$\frac{22}{n}$+n-1,
由對勾函數(shù)的性質(zhì)可知,
當(dāng)n=4時,$\frac{22}{4}$+4-1=$\frac{17}{2}$=8.5,
當(dāng)n=5時,$\frac{22}{5}$+5-1=$\frac{42}{5}$=8.4;
故答案為:5.

點(diǎn)評 本題考查了方程思想與函數(shù)思想的應(yīng)用,同時考查了累加法的應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.執(zhí)行如圖的程序框圖,則輸出的S=(  )
A.21B.34C.55D.89

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知0≤x≤y≤1,則(2x-y)(1-2x)的最大值為$\frac{1}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.要將兩種大小不同的鋼板截成A、B、C三種規(guī)格,每張鋼板可同時截得三種規(guī)格的小鋼板的塊數(shù)如表所示:
規(guī)格類型
鋼板類型
ABC
第一種鋼板   1   2     1
第二種鋼板  2    1     3
今需要三種規(guī)格的成品分別為12、15、27塊,用數(shù)學(xué)關(guān)系式和圖形表示上述要求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知z∈C,且|z-2-2i|=1,(i為虛數(shù)單位),則|z+2-i|的最大值為$\sqrt{17}+1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.將函數(shù)f(x)=$\sqrt{2}$sin(2x-$\frac{π}{4}$)+1的圖象向左平移$\frac{π}{8}$個單位長度,再向下平移1個單位長度后,得到函數(shù)g(x)的圖象,則函數(shù)g(x)具有的性質(zhì)①③⑤.(填入所有正確的序號)
①最大值為$\sqrt{2}$,圖象關(guān)于直線x=$\frac{3π}{4}$對稱;②在(-$\frac{π}{2}$,0)上單調(diào)遞增,且為偶函數(shù);③最小正周期為π;④圖象關(guān)于點(diǎn)($\frac{π}{4}$,0)對稱,⑤在(0,$\frac{π}{4}$)上單調(diào)遞增,且為奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知向量$\overrightarrow{m}$≠0,λ∈R,$\overrightarrow{a}$=$\overrightarrow{m}$+λ$\overrightarrow{n}$,$\overrightarrow$=λ$\overrightarrow{n}$,若向量$\overrightarrow{a}$與$\overrightarrow$共線,則( 。
A.λ=0B.$\overrightarrow{n}$=0C.$\overrightarrow{m}$∥$\overrightarrow{n}$D.λ=0或$\overrightarrow{m}$∥$\overrightarrow{n}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知m=$\frac{a}$,n=$\frac{b+p}{a+p}$(a>b>0,p>0),函數(shù)f(x)=$\left\{\begin{array}{l}{-1,x<0}\\{1,x>0}\end{array}\right.$,g(x)=$\left\{\begin{array}{l}{x,x<0}\\{-x,x≥0}\end{array}\right.$,則$\frac{(m+n)f(m-n)+g(m-n)}{2}$等于( 。
A.-mB.-nC.mD.n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知兩條平行線l1:3x-2y-6=0,l2:3x-2y+8=0,則與l2間的距離等于l1與l2間的距離的直線(不與l1重合)方程為( 。
A.3x-2y+22=0B.3x-2y-10=0C.3x-2y-20=0D.3x-2y+24=0

查看答案和解析>>

同步練習(xí)冊答案