10.已知M是橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{16}$=1上的點(diǎn),若F1,F(xiàn)2是橢圓的兩個(gè)焦點(diǎn),則|MF1|+|MF2|=(  )
A.6B.8C.18D.32

分析 利用橢圓的定義及其標(biāo)準(zhǔn)方程即可得出.

解答 解:由橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{16}$=1可得a2=16,解得a=4.
∴|MF1|+|MF2|=2×4=8.
故選:B.

點(diǎn)評 本題考查了橢圓的定義及其標(biāo)準(zhǔn)方程,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點(diǎn)F(-c,0)關(guān)于直線bx+cy=0的對稱點(diǎn)P在橢圓上,則橢圓的離心率是( 。
A.$\frac{\sqrt{2}}{4}$B.$\frac{\sqrt{3}}{4}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知x2≤1,且a-2≥0,求函數(shù)f(x)=x2+ax+3的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{a}^{x},}&{0≤x≤1}\\{\frac{x}{a}+1,}&{-1≤x<0}\end{array}\right.$(a>0且a≠1).若f(x)的最大值與最小值之差為$\frac{3}{2}$,則a的取值為2或$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.將函數(shù)y=f(x)cosx的圖象向左平移$\frac{π}{4}$個(gè)單位后,得到函數(shù)y=2cos2x-1的圖象,則f(x)=( 。
A.2sinxB.2cosxC.-2sinxD.-2cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.如圖,正方體ABCD-A1B1C1D1中,截面C1D1AB與底面ABCD所成二面角C1-AB-C的大小為$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)y=$lo{g}_{\frac{1}{2}}sin(2πx+\frac{π}{4})$的單調(diào)遞減區(qū)間是( 。
A.[$-\frac{3}{8}$+k,$\frac{1}{8}$+k](k∈Z)B.(-$\frac{1}{8}$+k,$\frac{1}{8}$+k](k∈Z)C.[$-\frac{3}{8}$+k,$\frac{1}{8}$+k](k∈Z)D.[$\frac{1}{8}$+k,$\frac{3}{8}$+k)(k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知直角梯形ABCD中,AD∥BC,AB⊥BC,AD=AB=2,BC=4,E為線段AB上的動(dòng)點(diǎn)(異于A、B),EF∥AD交CD于點(diǎn)F,沿EF折疊使二面角A-EF-B為直二面角.
(I)在線段BC上是否存在點(diǎn)M,使DM∥面AEB?若存在,則求出BM的長;若不存在,則說明理由;
(Ⅱ)若直線AC與面DCF所成的角為θ,求sinθ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.對任意的x≥2,都有(x+a)|x+a|+(ax)|x|≤0,則a的最大值是-1.

查看答案和解析>>

同步練習(xí)冊答案