A. | (2,4] | B. | [-2,4] | C. | [4,+∞) | D. | (-∞,-2]∪[4,+∞) |
分析 根據(jù)函數(shù)單調(diào)性的定義,判斷f(x)在(0,+∞)上的單調(diào)性,根據(jù)條件確定滿足條件的函數(shù)解不等式即可得到結(jié)論.
解答 解:取0<x1<x2,則x2x1>1,則f(x2x1)<0,
又∵f(xy)=f(x)+f(y),
∴f(x2)-f(x1)=f(x2x1•x1)-f(x1)=f(x2x1)+f(x1)-f(x1)=f(x2x1)<0,
∴f(x2)<f(x1),
∴f(x)在(0,+∞)上的單調(diào)遞減.
則不等式式f(x)+f(x-2)≥f(8)等價為式f[x(x-2)]≥f(8),
即{x>0x−2>0x2−2x≤8,即{x>0x>2−2≤x≤4,解得2<x≤4,
即不等式的解集為(2,4],
故選:A.
點(diǎn)評 本題主要考查函數(shù)單調(diào)性的定義和性質(zhì),以及抽象函數(shù)的求值,利用賦值法是解決抽象函數(shù)的基本方法,利用函數(shù)的單調(diào)性的定義和單調(diào)性的應(yīng)用是解決本題的關(guān)鍵,考查學(xué)生的運(yùn)算能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -3 | B. | 3 | C. | ±3 | D. | 不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com