11.“2<m<6”是“方程(6-m)x2+(m-2)y2=-m2+8m-12表示橢圓”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 求出方程表示橢圓的充要條件:分母都大于0且不等;求出m的范圍;利用充要條件的定義判斷前者是后者的什么條件.

解答 解:(6-m)x2+(m-2)y2=-m2+8m-12=(m-2)(6-m)
表示橢圓的充要條件是:
$\left\{\begin{array}{l}{m-2>0}\\{6-m>0}\\{m-2≠6-m}\end{array}\right.$,
解得2<m<6但m≠4;
當(dāng)2<m<6推不出2<m<6但m≠4;
2<m<6但m≠4成立時能推出2<m<6;
故2<m<6是方程表示橢圓的必要不充分條件.
故選:B.

點評 本題考查一個方程表示橢圓的充要條件、考查利用充要條件的定義判斷一個命題是另一個命題的什么條件.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知a>0,b>0,且$\frac{1}{a}+\frac{2}$=2.
(1)求ab的最小值;
(2)求a+2b的最小值,并求出a、b相應(yīng)的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知二項式(3-x)n(n∈N*)展開式中所有項的系數(shù)之和為a,所有項的系數(shù)的絕對值之和為b,則$\frac{a}$+$\frac{a}$的最小值為( 。
A.$\frac{9}{2}$B.2C.$\frac{13}{6}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)f(x)=sin(ωx+φ)(其中|φ|<$\frac{π}{2}$)的圖象如圖所示,則f(2016π)=( 。
A.-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=2sinωx,其中常數(shù)ω>0.
(Ⅰ)若y=f(x)在[-$\frac{π}{4}$,$\frac{2π}{3}$]上單調(diào)遞增,求ω的取值范圍;
(Ⅱ)令ω=2,將函數(shù)y=f(x)的圖象向左平移$\frac{π}{6}$個單位,再向上平移1個單位,得到函數(shù)y=g(x)的圖象求y=g(x)的圖象離原點O最近的對稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x≥1}\\{y≥1}\\{x+y≤3}\end{array}\right.$,則$\frac{y}{x}$的最大值為( 。
A.0B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知數(shù)列{an}的前n項和為Sn=2n-3n,則a6+a7+a8=215.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在三棱柱ABC-A1B1C1中,側(cè)棱AA1⊥底面ABC,AC=4,BC=3,AB=5,AA1=4,點D是AB的中點.
(1)求證:AC1∥平面CDB1;
(2)求直線AB1與平面BB1C1C所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.甲、乙兩個糧庫要項A,B量診運送大米,已知甲庫將調(diào)出100噸大米,乙?guī)鞂⒄{(diào)出80噸大米,A鎮(zhèn)至少需要60噸大米,B鎮(zhèn)至少需要100噸大米,且甲往B鎮(zhèn)運送大米的噸數(shù)不少于乙往A鎮(zhèn)運送大米的噸數(shù)的2倍,兩庫到兩鎮(zhèn)運費如表(其中a為常數(shù),$\frac{1}{2}$<a<2).
  運費(元/噸)
 甲庫 乙?guī)?/TD>
 A鎮(zhèn) 240+10a 180
 B鎮(zhèn) 260 210
為了滿足上述要求,同時使總運費最省,試問甲、乙糧庫應(yīng)運往A鎮(zhèn)各多少噸大米?

查看答案和解析>>

同步練習(xí)冊答案